Аминокислоты по химии. Шпаргалка: Аминокислоты

Аминокислоты, белки и пептиды являются примерами соединений, описанных далее. Многие биологически активные молекулы включают несколько химически различных функциональных групп, которые могут взаимодействовать между собой и с функциональными группа друг друга.

Аминокислоты.

Аминокислоты - органические бифункциональные соединения, в состав которых входит карбоксильная группа -СООН , а аминогруппа - NH 2 .

Разделяют α и β - аминокислоты:

В природе встречаются в основном α -кислоты. В состав белков входят 19 аминокислот и ода иминокислота (С 5 Н 9 NO 2 ):

Самая простая аминокислота - глицин. Остальные аминокислоты можно разделить на следующие основные группы:

1) гомологи глицина - аланин, валин, лейцин, изолейцин.

Получение аминокислот.

Химические свойства аминокислот.

Аминокислоты - это амфотерные соединения, т.к. содержат в своём составе 2 противоположные функциональные группы - аминогруппу и гидроксильную группу. Поэтому реагируют и с кислотами и с щелочами:

Кислотно-основные превращение можно представить в виде:

Среди азотсодержащих органических веществ имеются соединения с двойственной функцией. Особенно важными из них являются аминокислоты .

В клетках и тканях живых организмов встречается около 300 различных аминокислот, но только 20 ( α-аминокислоты) из них служат звеньями (мономерами), из которых построены пептиды и белки всех организмов (поэтому их называют белковыми аминокислотами). Последовательность расположения этих аминокислот в белках закодирована в последовательности нуклеотидов соответствующих генов. Остальные аминокислоты встречаются как в виде свободных молекул, так и в связанном виде. Многие из аминокислот встречаются лишь в определенных организмах, а есть и такие, которые обнаруживаются только в одном из великого множества описанных организмов. Большинство микроорганизмов и растения синтезируют необходимые им аминокислоты; животные и человек не способны к образованию так называемых незаменимых аминокислот, получаемых с пищей. Аминокислоты участвуют в обмене белков и углеводов, в образовании важных для организмов соединений (например, пуриновых и пиримидиновых оснований, являющихся неотъемлемой частью нуклеиновых кислот), входят в состав гормонов, витаминов, алкалоидов, пигментов, токсинов, антибиотиков и т. д.; некоторые аминокислоты служат посредниками при передаче нервных импульсов.

Аминокислоты - органические амфотерные соединения, в состав которых входят карбоксильные группы – СООН и аминогруппы -NH 2 .

Аминокислоты можно рассматривать как карбоновые кислоты, в молекулах которых атом водорода в радикале замещен аминогруппой.

КЛАССИФИКАЦИЯ

Аминокислоты классифицируют по структурным признакам.

1. В зависимости от взаимного расположения амино- и карбоксильной групп аминокислоты подразделяют на α-, β-, γ-, δ-, ε- и т. д.

2. В зависимости от количества функциональных групп различают кислые, нейтральные и основные.

3. По характеру углеводородного радикала различают алифатические (жирные), ароматические, серосодержащие и гетероциклические аминокислоты. Приведенные выше аминокислоты относятся к жирному ряду.

Примером ароматической аминокислоты может служить пара -аминобензойная кислота:

Примером гетероциклической аминокислоты может служить триптофан –незаменимая α- аминокислота

НОМЕНКЛАТУРА

По систематической номенклатуре названия аминокислот образуются из названий соответствующих кислот прибавлением приставки амино- и указанием места расположения аминогруппы по отношению к карбоксильной группе. Нумерация углеродной цепи с атома углерода карбоксильной группы.

Например:

Часто используется также другой способ построения названий аминокислот, согласно которому к тривиальному названию карбоновой кислоты добавляется приставка амино- с указанием положения аминогруппы буквой греческого алфавита.

Пример:

Для α-аминокислот R-CH(NH 2)COOH


Которые играют исключительно важную роль в процессах жизнедеятельности животных и растений, применяются тривиальные названия.

Таблица.

Аминокислота

Сокращённое

обозначение

Строение радикала (R)

Глицин

Gly (Гли)

H -

Аланин

Ala (Ала)

CH 3 -

Валин

Val (Вал)

(CH 3) 2 CH -

Лейцин

Leu (Лей)

(CH 3) 2 CH – CH 2 -

Серин

Ser (Сер)

OH- CH 2 -

Тирозин

Tyr (Тир)

HO – C 6 H 4 – CH 2 -

Аспарагиновая кислота

Asp (Асп)

HOOC – CH 2 -

Глутаминовая кислота

Glu (Глу)

HOOC – CH 2 – CH 2 -

Цистеин

Cys (Цис)

HS – CH 2 -

Аспарагин

Asn (Асн)

O = C – CH 2 –

NH 2

Лизин

Lys (Лиз)

NH 2 – CH 2 - CH 2 – CH 2 -

Фенилаланин

Phen (Фен)

C 6 H 5 – CH 2 -

Если в молекуле аминокислоты содержится две аминогруппы, то в ее названии используется приставка диамино- , три группы NH 2 – триамино- и т.д.

Пример:

Наличие двух или трех карбоксильных групп отражается в названии суффиксом –диовая или -триовая кислота :

ИЗОМЕРИЯ

1. Изомерия углеродного скелета

2. Изомерия положения функциональных групп

3. Оптическая изомерия

α-аминокислоты, кроме глицина NН 2 -CH 2 -COOH.

ФИЗИЧЕСКИЕ СВОЙСТВА

Аминокислоты представляют собой кристаллические вещества с высокими (выше 250°С) температурами плавления, которые мало отличаются у индивидуальных аминокислот и поэтому нехарактерны. Плавление сопровождается разложением вещества. Аминокислоты хорошо растворимы в воде и нерастворимы в органических растворителях, чем они похожи на неорганические соединения. Многие аминокислоты обладают сладким вкусом.

ПОЛУЧЕНИЕ

3. Микробиологический синтез. Известны микроорганизмы, которые в процессе жизнедеятельности продуцируют α - аминокислоты белков.

ХИМИЧЕСКИЕ СВОЙСТВА

Аминокислоты амфотерные органические соединения, для них характерны кислотно-основные свойства.

I . Общие свойства

1. Внутримолекулярная нейтрализация → образуется биполярный цвиттер-ион:

Водные растворы электропроводны. Эти свойства объясняются тем, что молекулы аминокислот существуют в виде внутренних солей, которые образуются за счет переноса протона от карбоксила к аминогруппе:

цвиттер-ион

Водные растворы аминокислот имеют нейтральную, кислую или щелочную среду в зависимости от количества функциональных групп.

ПРИМЕНЕНИЕ

1) аминокислоты широко распространены в природе;

2) молекулы аминокислот – это те кирпичики, из которых построены все растительные и животные белки; аминокислоты, необходимые для построения белков организма, человек и животные получают в составе белков пищи;

3) аминокислоты прописываются при сильном истощении, после тяжелых операций;

4) их используют для питания больных;

5) аминокислоты необходимы в качестве лечебного средства при некоторых болезнях (например, глутаминовая кислота используется при нервных заболеваниях, гистидин – при язве желудка);

6) некоторые аминокислоты применяются в сельском хозяйстве для подкормки животных, что положительно влияет на их рост;

7) имеют техническое значение: аминокапроновая и аминоэнантовая кислоты образуют синтетические волокна – капрон и энант.

О РОЛИ АМИНОКИСЛОТ

Нахождение в природе и биологическая роль аминокислот

Нахождение в природе и би...гическая роль аминокислот


ОПРЕДЕЛЕНИЕ

Аминокислоты - это сложные органические соединения, которые в своей молекуле одновременно содержат аминогруппу и карбоксильную группу.

Аминокислоты представляют собой твердые кристаллические вещества, характеризующиеся высокими температурами плавления и разлагающиеся при нагревании. Они хорошо растворяются в воде. Данные свойства объясняются возможностью существование аминокислот в виде внутренних солей (рис. 1).

Рис. 1. Внутренняя соль аминоуксусной кислоты.

Получение аминокислот

Исходными соединениями для получения аминокислот часто служат карбоновые кислоты, в молекулу которых вводится аминогруппа. Например, получение их из галогензамещенных кислот

CH 3 -C(Br)H-COOH + 2NH 3 →CH 3 -C(NH 2)H-COOH + NH 4 Br.

Кроме этого исходным сырьем для получения аминокислот могут служить альдегиды (1), непредельные кислоты (2) и нитросоединения (3):

CH 3 -C(O)H + NH 3 + HCN → CH 3 -C(NH 2)H-C≡H + H 2 O;

CH 3 -C(NH 2)H-C≡H + H 2 O (H +) → CH 3 -C(NH 2)H-COOH + NH 3 (1).

CH 2 =CH-COOH + NH 3 → H 2 N-CH 2 -CH 2 -COOH (2);

O 2 N-C 6 H 4 -COOH + [H] →H 2 N-C 6 H 4 -COOH (3).

Химические свойства аминокислот

Аминокислота как гетерофункциональные соединения вступают в большинство реакций, характерных для карбоновых кислот и аминов. Наличие в молекулах аминокислот двух различных функциональных групп приводит к появлению ряда специфических свойств.

Аминокислоты - амфотерные соединения. Они реагируют как с кислотами, так и с основаниями:

NH 2 -CH 2 -COOH + HCl→ Cl

NH 2 -CH 2 -COOH + NaOH→ NH 2 -CH 2 -COONa + H 2 O

Водные растворы аминокислот имеют нейтральную, щелочную и кислотную среду в зависимости от количества функциональных групп. Например, глутаминовая кислота образует кислый раствор, поскольку в её составе две карбоксильные группы и одна аминогруппа, а лизин - щелочной раствор, т.к. в её составе одна карбоксильная группа и две аминогруппы.

Две молекулы аминокислоты могут взаимодействовать друг с другом. При этом происходит отщепление молекулы воды и образуется продукт, в котором фрагменты молекулы связаны между собой пептидной связью (-CO-NH-). Например:

Полученное соединение называют дипептидом. Вещества, построенные из многих остатков аминокислот, называются полипептидами. Пептиды гидролизуются под действием кислот и оснований.

Применение аминокислот

Аминокислоты, необходимые для построения организма, как человек, так и животные получают из белков пищи.

γ-Аминомасляная кислота используется в медицине (аминалон / гаммалон) при психических заболеваниях; на её основе создан целый ряд ноотропных препаратов, т.е. оказывающих влияние на процессы мышления.

ε-Аминокапроновая кислота также используется в медицине (кровоостанавливающее средство), а кроме того представляет собой крупнотоннажный промышленный продукт, использующийся для получения синтетического полиамидного волокна - капрона.

Антраниловая кислота используется для синтеза красителей, например синего индиго, а также участвует в биосинтезе гетероциклических соединений.

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций аланина с: а) гидроксидом натрия; б) гидроксидом аммония; в) соляной кислотой. За счет каких групп внутренняя соль проявляет кислотные и основные свойства?
Ответ Аминокислоты часто изображают как соединения, содержащие аминогруппу и карбоксильную группу, однако с такой структурой не согласуются некоторые их физические и химические свойства. Строение аминокислот соответствует биполярному иону:

H 3 N + -CH(R)-COO — .

Запишем формулу аланина как внутренней соли:

H 3 N + -CH(CH 3)-COO — .

Исходя из этой структурной формулы, напишем уравнения реакций:

а) H 3 N + -CH(CH 3)-COO — + NaOH = H 2 N-CH(CH 3)-COONa + H 2 O;

б) H 3 N + -CH(CH 3)-COO — + NH 3 ×H 2 O = H 2 N-CH(CH 3)-COONH 4 + H 2 O;

в) H 3 N + -CH(CH 3)-COO — + HCl = Cl — .

Внутренняя соль аминокислоты реагирует с основаниями как кислота, с кислотами - как основание. Кислотная группа - N + H 3 , основная - COO — .

ПРИМЕР 2

Задание При действии на раствор 9,63 г неизвестной моноаминокарбоновой кислоты избытком азотистой кислоты было получено 2,01 л азота при 748 мм. рт. ст. и 20 o С. Определите молекулярную формулу этого соединения. Может ли эта кислоты быть одной из природных аминокислот? Если да, то какая это кислота? В состав молекулы этой кислоты не входит бензольное кольцо.
Решение Напишем уравнение реакции:

H 2 NC x H 2 x COOH + HONO = HO-C x H 2 x -COOH + N 2 + H 2 O.

Найдем количество вещества азота при н.у., применяя уравнение Клапейрона-Менделеева. Для этого температуру и давление выражаем в единицах СИ:

T = 273 + 20 = 293 K;

P = 101,325 × 748 / 760 = 99,7 кПа;

n(N 2) = 99,7 × 2,01 / 8,31 × 293 = 0,082 моль.

По уравнению реакции находим количество вещества аминокислоты и её молярную массу.

По уравнению n(H 2 NC x H 2 x COOH) = n(N 2) = 0,082 моль.

M(H 2 NC x H 2 x COOH) = 9,63 / 0,082 = 117 г/моль.

Определим аминокислоту. Составим уравнение и найдем x:

14x + 16 + 45 = 117;

H 2 NC 4 H 8 COOH.

Из природных кислот такому составу может отвечать валин.

Ответ Эта аминокислота — валин.

Аминокислоты.

Аминокислоты (аминокарбоновые кислоты) - органические соединения, в молекуле которых одновременно содержатся карбоксильные (-COOH ) и аминные группы (-NH 2 ).


Строение аминокислот можно выразить приведённой ниже общей формулой,
(где R – углеводородный радикал, который может содержать и различные функциональные группы).

Аминокислоты могут рассматриваться как производные карбоновых кислот , в которых один или несколько атомов водорода заменены на аминные группы (-NH2 ).


В качестве примера можно привести простейшие: аминоуксусную кислоту, или глицин , и аминопропионовую кислоту или аланин :


Химические свойства аминокислот

Аминокислоты – амфотерные соединения , т.е. в зависимости от условий они могут проявлять как основные, так и кислотные свойства.


За счёт карбоксильной группы (-COOH ) они образуют соли с основаниями.
За счёт аминогруппы (-NH 2 ) образуют соли с кислотами.


Ион водорода, отщепляющийся при диссоциации от карбоксила (-ОН ) аминокислоты, может переходить к её аминогруппе с образованием аммониевой группировки (NH 3 + ).


Таким образом, аминокислоты существуют и вступают в реакции также в виде биполярных ионов (внутренних солей).


Этим объясняется, что растворы аминокислот, содержащих одну карбоксильную и одну аминогруппу, имеют нейтральную реакцию.

Альфа-аминокислоты

Из молекул аминокислот строятся молекулы белковых веществ или белков , которые при полном гидролизе под влиянием минеральных кислот, щелочей или ферментов распадаются, образуя смеси аминокислот.


Общее число встречающихся в природе аминокислот достигает 300, однако некоторые из них достаточно редки.


Среди аминокислот выделяется группа из 20 наиболее важных. Они встречаются во всех белках и получили название альфа-аминокислот .


Альфа-аминокислоты – кристаллические вещества, растворимые в воде. Многие из них обладают сладким вкусом. Это свойство нашло отражение в названии первого гомолога в ряду альфа-аминокислот – глицина , явившегося также первой альфа-аминокислотой, обнаруженной в природном материале.


Ниже приведена таблица с перечнем альфа-аминокислот:


Название
Формула
Название остатка
Аминокислоты с алифатическими радикалами
ОН-группу
Ser
Thr
Аминокислоты с радикалами, содержащими COОН-группу
Asp
Glu
Аминокислоты с радикалами, содержащими NH 2 CO -группу
Asn
Gln
Аминокислоты с радикалами, содержащими NH 2 -группу
Lys
Arg
Аминокислоты с радикалами, содержащими cеру
Cys
Met
Аминокислоты с ароматическими радикалами
Phe
Tyr
Аминокислоты с гетероциклическими радикалами
Trp
His
Pro

Незаменимые аминокислоты

Основным источником альфа-аминокислот для животного организма служат пищевые белки.


Многие альфа-аминокислоты синтезируются в организме, некоторые же необходимые для синтеза белков альфа-аминокислоты в организме не синтезируются и должны поступать извне, с продуктами питания . Такие аминокислоты называют незаменимыми . Вот их список:


Название аминокислоты
Название продуктов питания

зерновые, бобовые, мясо, грибы, молочные продукты, арахис

миндаль, кешью, куриное мясо, турецкий горох (нут), яйца, рыба, чечевица, печень, мясо, рожь, большинство семян, соя

мясо, рыба, чечевица, орехи, большинство семян, курица, яйца, овёс, бурый (неочищенный) рис

рыба, мясо, молочные продукты, пшеница, орехи, амарант

молоко, мясо, рыба, яйца, бобы, фасоль, чечевица и соя

молочные продукты, яйца, орехи, бобы

бобовые, овёс, бананы, сушёные финики, арахис, кунжут, кедровые орехи, молоко, йогурт, творог, рыба, курица, индейка, мясо

бобовые, орехи, говядина, куриное мясо, рыба, яйца, творог, молокос

семена тыквы, свинина, говядина, арахис, кунжут, йогурт, швейцарский сыр

тунец, лосось, свиная вырезка, говяжье филе, куриные грудки, соевые бобы, арахис, чечевица


При некоторых, часто врождённых, заболеваниях перечень незаменимых кислот расширяется. Например, при фенилкетонурии человеческий организм не синтезирует ещё одну альфа-аминокислоту - тирозин , который в организме здоровых людей получается при гидроксилировании фенилаланина.

Использование аминокислот в медицинской практике

Альфа-аминокислоты занимают ключевое положение в азотистом обмене . Многие из них используются в медицинской практике в качестве лекарственных средств , влияющих на тканевый обмен.


Так, глутаминовая кислота применяется для лечения заболеваний центральной нервной системы, метионин и гистидин – лечения и предупреждения заболеваний печени, цистеин – глазных болезней.

Аминокислотами называются органические соединения, содержащие в молекуле функциональные группы: амино- и карбоксильную.

Номенклатура аминокислот. По систематической номенклатуре названия аминокислот образуются из названий соответствующих карбоновых кислот и добавления слова «амино». Положение аминогруппы указывают цифрами. Отсчет ведется от углерода карбоксильной группы.

Изомерия аминокислот. Их структурная изомерия определяется положением аминогруппы и строением углеродного радикала. В зависимости от положенияNH 2 -группы различают-,- и-аминокислоты.

Из -аминокислот строятся молекулы белка.

Для них также характерна изомерия функциональной группы (межклассовыми изомерами аминокислот могут быть сложные эфиры аминокислот или амиды гидроксикислот). Например, для 2-аминопропановой кислоты СН 3 СН(NH) 2 COOHвозможны следующие изомеры

Физические свойства α-аминокислот

Аминокислоты – бесцветные кристаллические вещества, нелетучие (малое давление насыщенного пара), плавящиеся с разложением при высоких температурах. Большинство их хорошо растворимо в воде и плохо в органических растворителях.

Водные растворы одноосновных аминокислот имеют нейтральную реакцию. -Аминокислоты можно рассматривать как внутренние соли (биполярные ионы): + NH 3 CH 2 COO  . В кислой среде они ведут себя как катионы, в щелочной – как анионы. Аминокислоты являются амфотерными соединениями, проявляющими одновременно кислотные и основные свойства.

Способы получения -аминокислот

1. Действие аммиака на соли хлорзамещенных кислот.

ClCH 2 COONH 4 + NH 3
NH 2 CH 2 COOH

2. Действие аммиака и синильной кислоты на альдегиды.

3. Гидролизом белков получают 25 различных аминокислот. Разделение их – очень не простая задача.

Способы получения -аминокислот

1. Присоединение аммиака к непредельным карбоновым кислотам.

СН 2 = СНСООН + 2NH 3  NH 2 CH 2 CH 2 COONH 4 .

2. Синтез на базе двухосновной малоновой кислоты.

Химические свойства аминокислот

1. Реакции по карбоксильной группе.

1.1. Образование эфиров при действии спиртов.

2. Реакции по аминогруппе.

2.1. Взаимодействие с минеральными кислотами.

NH 2 CH 2 COOH + HCl  H 3 N + CH 2 COOH + Cl 

2.2. Взаимодействие с азотистой кислотой.

NH 2 CH 2 COOH + HNO 2  HOCH 2 COOH + N 2 + H 2 O

3. Превращение аминокислот при нагревании.

3.1.-аминокислоты образуют циклические амиды.

3.2.-аминокислоты отщепляют аминогруппу и атом водорода у-углеродного атома.

Отдельные представители

Глицин NH 2 CH 2 COOH(гликокол). Одна из наиболее распространенных аминокислот, входящих в состав белков. При обычных условиях – бесцветные кристаллы с Т пл = 232236С. Хорошо растворима в воде, нерастворима в абсолютном спирте и эфире. Водородный показатель водного раствора6,8; рК а = 1,510  10 ; рК в = 1,710  12 .

-аланин – аминопропионовая кислота

Широко распространена в природе. Встречается в свободном виде в плазме крови и в составе большинства белков. Т пл = 295296С, хорошо растворима в воде, плохо в этаноле, нерастворима в эфире. рК а (СООН)= 2,34; рК а (NH) = 9,69.

-аланин NH 2 CH 2 CH 2 COOH– мелкие кристаллы с Т пл = 200С, хорошо растворима в воде, плохо в этаноле, нерастворима в эфире и ацетоне. рК а (СООН) = 3,60; рК а (NH) = 10,19; в белках отсутствует.

Комплексоны. Этот термин используют для названия ряда -аминокислот, содержащих две или три карбоксильные группы. Наиболее простые:

Наиболее распространенный комплексон – этилендиаминтетрауксусная кислота.

Ее динатриевая соль – трилон Б – чрезвычайно широко применяется в аналитической химии.

Связь между остатками -аминокислот называют пептидной, а сами образующиеся соединения пептидами.

Два остатка -аминокислот образуют дипептид, три – трипептид. Много остатков образуют полипептиды. Полипептиды, как и аминокислоты, амфотерны, каждому свойственна своя изоэлектрическая точка. Белки - полипептиды.