Что находится между клетками в растении. Клеточное строение растительного организма

Растительная клетка имеет целлюлозную оболочку, чем значительно отличается от животной клетки . Эта оболочка выполняет защитную, формирующую и транспортную функцию. Кроме органоидов , характерных для всех эукариот, растительная клетка содержит пластиды и вакуоль с клеточным соком.

Типы растительных тканей.

Ткань - это совокупность однотипных клеток и межклеточного вещества, которые выполняют одну и ту же или несколько функций.

Растительные ткани бывают следующих видов:

1) Покровные

2) Образовательные

3) Проводящие

4) Механические

5) Выделительные

Покровные ткани растений находятся на внешней стороне частей растения. Они выполняют барьерную, защитную и питательную функции. К покровным тканям относится эпидерма, ризодерма, перидерма и корка .

Образовательные ткани обеспечивают рост растения, образуя новые клетки. Именно благодаря этим клеткам растение может продолжать расти в течение всего периода жизнедеятельности. Образовательные ткани бывают верхушечными, боковыми, раневыми (травматическими) и вставочными.

Проводящие ткани транспортируют питательные вещества по всем частям и органам растения . Проводящие ткани включают в себя флоэму (луб) и ксилему (древесина). Про флоэме органические вещества могут двигаться как сверху вниз, так и снизу вверх - к цветкам или плодам. По ксилеме питательные вещества и вода идут восходящим потоком снизу вверх.

Механические ткани выполняют защитную и опорную функцию. Существует два вида механической ткани: склеренхима и колленхима . Склеренхима состоит из отмерших ороговевших клеток, которые, собственно, и выполняют главные функции по защите и опоре растения. Колленхима представляет собой еще живые клетки , которые служат и для роста растения, и для образования склеренхимы после отмирания.

Выделительные ткани растений контролируют обмен веществ и взаимодействие со внешней средой. Различают ассимиляционную (фотосинтезирующую), воздухоносную, водоносную и запасающую выделительные ткани.

Содержание:

  • Цитология.
  • Строение растительной клетки

    Растение, как и всякий живой организм, состоит из клеток, причем каждая клетка порождается тоже клеткой. Клетка - это простейшая и обязательная единица живого, это его элемент, основа строения, развития и всей жизнедеятельности организма.
    Цитология - наука о строении растений на клеточном уровне.
  • Рассмотрим функциональные особенности компонентов растительной клетки:

  • Клеточная стенка состоит из целлюлозы. Прочная клеточная стенка позволяет поддерживать внутреннее давление - тургор (внутреннее гидростатическое давление в живой клетке, вызывающее напряжение клеточной оболочки).
  • Цитоплазма состоит из воды с растворенными в ней веществами и органоидов. Цитоплазма заполняет внутренний объём клетки.
  • Хлоропласты - это органеллы, в которых происходит фотосинтез; различают зеленые хлоропласты, содержащие хлорофилл, хромопласты, содержащие жёлтые и оранжевые пигменты, а также лейкопласты - бесцветные пластиды.
  • Вакуоли - мембранные пузырьки в цитоплазме клетки, в которых происходит внутриклеточное пищеварение у простейших и губок. Для растительных клеток характерно наличие вакуоли с клеточным соком, в котором растворены соли, сахара, органические кислоты. Вакуоль регулирует тургор клетки.
  • Аппарат Гольджи - это комплекс плоских полых цистерн и пузырьков, где синтезируются полисахариды, входящие в состав клеточной стенки. Помимо секреции различных веществ аппарат Гольджи выполняет и еще одну важную функцию - в нём формируются лизосомы.
  • Лизосомы - мембранные тельца, содержащие ферменты внутриклеточного пищеварения. Способны расщеплять (лизировать) белки, нуклеиновые кислоты, полисахариды, липиды.
  • Рибосомы - внутриклеточные частицы, осуществляющие биосинтез белка.
  • Митохондрии - двухмембранные тельца, на складках их внутренней мембраны - кристах - происходит окисление органических веществ, а освободившаяся энергия используется для синтеза АТФ (Аденозинтрифосфат - нуклеотид, играет исключительно важную роль в обмене энергии и веществ в организмах; в первую очередь соединение известно как универсальный источник энергии для всех биохимических процессов, протекающих в живых системах).
  • Эндоплазматический ретикулум - место синтеза липидов. Шероховатый эндоплазматический ретикулум связан с рибосомами, осуществляет синтез белков.
  • Ядро - окружено ядерной оболочкой и содержит наследственный материал - ДНК со связанными с ней белками - гистонами (хроматин). Ядро контролирует жизнедеятельность клетки.
  • Ядрышко - место синтеза молекул т-РНК, р-РНК и рибосомных субъединиц. Хроматин содержит кодированную информацию для синтеза белка в клетке. Во время деления наследственный материал представлен хромосомами.
    Плазмодесмы (поры) - мельчайшие цитоплазматические каналы, пронизывающие клеточные стенки и объединяющие соседние клетки.
    Микротрубочки состоят из белка тубулина и расположены около плазматической мембраны. Они участвуют в перемещении органелл в цитоплазме, во время деления клетки формируют веретено деления.

    В природе клетки имеют два уровня сложности: ПРОКАРИОТ (безъядерных) и ЭУКАРИОТ (ядерных).
    Прокариотические организмы объединяют две группы - бактерии и сине-зеленые водоросли.


    Прокариотная клетка не имеет чётко выраженного ядра - только зону, содержащую одну молекулу ДНК.

    Эукариоты являются потомками прокариотических клеток, в которые внедрились аэробные прокариоты, из которых образовались, впоследствии, митохондрии. Такие клетки дали начало аэробным гетеротрофам (животным). Внедрение в такие клетки фотосинтезирующих прокариот привело к возникновению аэробных автотрофов, или растений. А фотосинтезирующие прокариоты дали начало хлоропластам.

    В таблице представлены сходства и различия прокариот и эукариот

    Прокариоты Эукариоты
    Представители Сине-зелёные водоросли, бактерии Животные, растения, грибы
    Цитоплазма Бедна органоидами Богата органоидами
    Ядро Нет сформированного ядра и ядрышек Есть ядро и ядрышки
    Эндоплазматическая сеть Нет Есть
    Рибосомы Расположены в цитоплазме Расположены на мембране
    Митохондрии Нет Есть
    Пластиды Нет Есть в клетках растений
    Аппарат Гольджи Нет Есть
    Клеточный центр Нет Есть (у большинства)
    Жгутики и реснички Белковые нити не образуют микротрубочек Состоят из микротрубочек
    Хромосомы Одна Всегда в диплоидном наборе
    Способ деления Амитоз Митоз
    Размножение Вегетативное, спорообразование Половое: образование гамет

    Лекция № 2

    Структура растительной клетки

    1. Особенности строения клеток растений

    2. Основные химические компоненты протопласта

    3. Цитоплазма

    4. Ядро. Деление ядра и клетки.

    5. Производные протопласта.

    Открытие и изучение клетки связаны с созданием светового микроскопа в конце XVI – начале XVII в. Растительную клетку открыл англичанин Роберт Гук в 1665 г., рассматривая под микроскопом срез растительной пробки. Термин “клетка” он употребил впервые в своей книге “Микрография” при описании ячеек этой пробки. На рубеже 30-40-х годов XIX в. немецкими учеными зоологом Т.Шванном и ботаником М.Шлейденом сформулирована клеточная теория, главный тезис которой – признание клеточного строения всех живых организмов. Клетка – главный компонент морфологического строения организмов, так как именно из клеток состоят ткани и органы. Клетка – основа многоклеточных организмов и в физиологическом отношении, так как является исходной единицей функциональной активности его органов и тканей. Клетка – сложная целостная система, образованная из взаимодействующих компонентов и выполняющая функцию связи между индивидуумом и видом, так как в ней сосредоточена наследственная информация, обеспечивающая сохранность вида и разнообразие его особей.

    1. Особенности строения клеток растений. Размеры большинства клеток покрытосеменных растений колеблются от 10 до 100 мкм. Число клеток в теле растения, как правило, очень велико, например, более чем 100 млн. в одном листе дерева.

    По форме различают два основных типа клеток: паренхимные и прозенхимные. Клетки, диаметр которых по всем направлениям различается не сильно, называют паренхимными (греч. пара – равный, энхима - начинка). Обычно в зрелом состоянии они остаются живыми. Примером паренхимных клеток может служить большинство клеток листьев, сочных плодов. Очень часто разрастание клеток идет преимущественно в одном направлении, в результате чего образуются сильно вытянутые, прозенхимные (греч. прос – по направлению к) клетки. Концы их обычно заострены. Прозенхимные клетки характерны для древесины. В зрелом состоянии обычно они мертвы.

    В растительной клетке различают пять структурных элементов: 1. Клеточная стенка; 2. Одна крупная и несколько мелких вакуолей с клеточным соком; 3. Вязкая цитоплазма, расположенная между клеточной стенкой и вакуолью; 4. Ядро, погруженное в цитоплазму; 5. Пластиды.

    Все компоненты клетки можно разделить на две группы: а) протопласт – основа клетки с ее живым содержимым – органеллами; б) производные протопласта – клеточная стенка и вакуоль с клеточным соком. Большую часть протопласта растительной клетки занимает цитоплазма, меньшую по массе – ядро. От вакуоли протопласт отграничен мембраной – тонопластом, от клеточной стенки – другой мембраной – плазмалеммой. От цитоплазмы ядро также отделено мембранами.

    Протопласт (греч. протос – первый, пластос - оформленный) представляет собой многофазную коллоидную систему – гидрозоль, где дисперсной средой является на 90-95 % вода, а дисперсной фазой – органические вещества: белки, нуклеиновые кислоты, липиды, углеводы и др. Протопласт дифференцирован на различные компоненты, называемые органеллами (или органоидами). Органеллы погружены в гиалоплазму. Гиалоплазма с органеллами составляет цитоплазму клетки.

    Своеобразие растительных клеток заключается в наличии у них прочных оболочек, пронизанных плазмодесмами (тончайшие цитоплазматические нити, или каналы, пересекающие оболочку смежных клеток), пластид и в большинстве случаев крупной центральной вакуоли.

    Отличие растительной клетки от животной

    Растительная клетка

    Животная клетка

    1. Растительная клетка крупнее животной

    1. Форма клеток более разнообразная (нервные, мерцательные, кубические)

    2. Оболочка растительной клетки состоит из целлюлозы

    2. В состав оболочки животной клетки входят органические вещества

    3. Растительная клетка имеет пластиды (хлоропласты, хромопласты, лейкопласты)

    3. Пластиды отсутствуют

    4. Происходит фотосинтез посредством световой энергии, в результате чего образуются органические вещества

    4. Органические вещества синтезируются самостоятельно

    2. Основные химические компоненты протопласта. Органические вещества клетки. Белки – биополимеры, образованные аминокислотами, составляют 40-50% сухой массы протопласта. Они участвуют в построении структуры и функциях всех органелл. В химическом отношении белки подразделяются на простые (протеины) и сложные (протеиды). Сложные белки могут образовывать комплексы с липидами – липопротеиды, с углеводами – гликопротеиды, с нуклеиновыми кислотами – нуклеопротеиды и т.д.

    Белки входят в состав ферментов (энзимов), регулирующих все жизненно важные процессы.

    Нуклеиновые кислоты – ДНК и РНК – важнейшие биополимеры протопласта, содержание которых составляет 1-2 % от его массы. Это вещества хранения и передачи наследственной информации. ДНК в основном содержится в ядре, РНК – в цитоплазме и ядре. ДНК содержит углеводный компонент дезоксирибозу, а РНК – рибонуклеиновую кислоту. Нуклеиновые кислоты – полимеры, мономерами которых являются нуклеотиды. Нуклеотид состоит из азотистого основания, сахара рибозы или дезоксирибозы и остатка фосфорной кислоты. Нуклеотиды бывают пяти типов в зависимости от азотистого основания. Молекула ДНК представлена двумя полинуклеотидными спиральными цепями, молекула РНК – одной.

    Липиды – жироподобные вещества, содержащиеся в количестве 2-3 %. Это запасные энергетические вещества, входящие также в состав клеточной стенки. Жироподобные соединения покрывают тонким слоем листья растений, не давая им намокать во время обильных дождей. Протопласт растительной клетки содержит простые (жирные масла) и сложные липиды (липоиды, или жироподобные вещества).

    Углеводы. Углеводы входят в состав протопласта каждой клетки в виде простых соединений (растворимых в воде сахаров) и сложных углеводов (нерастворимых или слаборастворимых) – полисахаридов. Глюкоза (С 6 Н 12 О 6) – моносахарид. Особенно много его в сладких плодах, он играет роль в образовании полисахаридов, легко растворяется в воде. Фруктоза, или плодовый сахар, - моносахарид, имеющий такую же формулу, но по вкусу значительно слаще. Сахароза (С 12 Н 22 О 11) – дисахарид, или тростниковый сахар; в больших количествах содержится в сахарном тростнике и корнеплодах сахарной свеклы. Крахмал и целлюлоза – полисахариды. Крахмал – резервный энергетический полисахарид, целлюлоза – основной компонент клеточной стенки. В клеточном соке корнеклубней георгина, корнях цикоря, одуванчика, девясила и других сложноцветных встречается еще один полисахарид – инулин.

    Из органических веществ в клетках также содержатся витамины – физиологически активные органические соединения, контролирующие ход обмена веществ, гормоны, регулирующие процессы роста и развития организма, фитонциды – жидкие или летучие вещества, выделяемые высшими растениями.

    Неорганические вещества в клетке. Клетки включают от 2 до 6 % неорганических веществ. В составе клетки обнаружено более 80 химических элементов. По содержанию элементы, входящие в состав клетки, можно разделить на три группы.

    Макроэлементы. На их долю приходится около 99 % всей массы клетки. Особенно высока концентрация кислорода, углерода, азота и водорода. Их доля составляет 98 % всех макроэлементов. К оставшимся 2 % относятся - калий, магний, натрий, кальций, железо, сера, фосфор, хлор.

    Микроэлементы. К ним принадлежат преимущественно ионы тяжелых металлов, входящие в состав ферментов, гормонов и других жизненно важных веществ. Содержание их в клетке колеблется от 0,001 до 0,000001 %. К микроэлементам относятся бор, кобальт, медь, молибден, цинк, ванадий, йод, бром и др.

    Ультрамикроэлементы. Доля их не превышает 0,000001 %. К ним относятся уран, радий, золото, ртуть, бериллий, цезий, селен и другие редкие металлы.

    Вода – составная часть любой клетки, это основная среда организма, принимающая непосредственное участие во многих реакциях. Вода - источник кислорода, выделяемого при фотосинтезе, и водорода, который используется для восстановления продуктов ассимиляции диоксида углерода. Вода – растворитель. Различают гидрофильные вещества (от греч. «hydros» - вода и «phileo» - люблю), хорошо растворимые в воде, и гидрофобные (греч. «phobos» - боязнь) – вещества, трудно или совсем не растворимые в воде (жиры, жироподобные вещества и др.). Вода – основное средство передвижения вещества в организме (восходящие и нисходящие токи растворов по сосудам растений) и в клетке.

    3. Цитоплазма. В протопласте большую часть занимает цитоплазма с органоидами, меньшую - ядро с ядрышком. Цитоплазма имеет плазматические оболочки: 1) плазмалемму – наружную мембрану (оболочку); 2) тонопласт – внутреннюю мембрану, соприкасающуюся с вакуолью. Между ними расположена мезоплазма – основная масса цитоплазмы. В мезоплазму входят: 1) гиалоплазма (матрикс) – бесструктурная часть мезоплазмы; 2) эндоплазматическая сеть (ретикулум); 3) аппарат Гольджи; 4) рибосомы; 5) митохондрии (хондриосомы); 6) сферосомы; 7) лизосомы; 8) пластиды.

    Цитоплазма представляет собой густой прозрачный коллоидный раствор. В зависимости от выполняемых физиологических функций каждая клетка имеет свой химический состав. Основу цитоплазмы составляет ее гиалоплазма, или матрикс, роль которой заключается в объединении всех клеточных структур в единую систему и обеспечении взаимодействия между ними. Цитоплазма имеет щелочную реакцию среды и на 60-90 % состоит из воды, в которой растворены различные вещества: до 10-20 % белков, 2-3 % жироподобных веществ, 1,5 % органических и 2-3 % неорганических соединений. В цитоплазме осуществляется важнейший физиологический процесс – дыхание, или гликолиз, в результате которого происходит расщепление глюкозы без доступа кислорода в присутствии ферментов с освобождением энергии и образованием воды и диоксида углерода. Цитоплазма пронизана мембранами – тончайшими пленками фосфолипидного строения. Мембраны образуют эндоплазматическую сеть – систему мелких канальцев и полостей, образующих сеть. Эндоплазматическая сеть называется шероховатой (гранулярной), если на мембранах канальцев и полостей находятся рибосомы или группы рибосом, которые выполняют синтез белка. Если эндоплазматическая сеть лишена рибосом, то называется гладкой (агранулярной). На мембранах гладкой эндоплазматической сети синтезируются липиды и углеводы.

    Аппарат Гольджи – система уплощенных цистерн, лежащих параллельно и ограниченных двойными мембранами. От концов цистерн отшнуровываются пузырьки, через которые удаляются конечные или ядовитые продукты жизнедеятельности клетки, обратно же в диктиосомы поступают вещества, необходимые для синтеза сложных углеводов (полисахаридов) на построение клеточной стенки. Также комплекс Гольджи участвует в формировании вакуолей. Одно из важнейших биологических свойств цитоплазмы – циклоз (способность к движению), интенсивность которого зависит от температуры, степени освещения, снабжения кислородом и других факторов.

    Рибосомы – мельчайшие частицы (от 17 до 23 нм), образованные рибонуклеопротеидами и молекулами белка. Они присутствуют в цитоплазме, ядре, митохондриях, пластидах; бывают одиночными и групповыми (полисомы). Рибосомы – центры синтеза белка.

    Митохондрии – «энергетические станции» всех эукариотических клеток. Форма их разнообразна: от округлых до цилиндрических и даже палочковидных телец. Численность их – от нескольких десятков до нескольких тысяч в каждой клетке.Размеры не более 1 мкм. Снаружи митохондрии окружены двухмембранной оболочкой. Внутренняя мембрана представлена в виде пластинчатых выростов – крист. Размножаются путем деления.

    Основная функция митохондрий – участие в дыхании клетки с помощью ферментов. В митохондриях в результате реакции окислительного фосфорилирования синтезируются богатые энергией молекулы аденозинтрифосфорной кислоты (АТФ). Механизм окислительного фосфорилирования был открыт английским биохимиком П.Митчелом в 1960 г.

    Пластиды. Эти органеллы, характерные только для растений, встречаются во всех живых растительных клетках. Пластиды – относительно крупные (4-10 мкм) живые растительные тельца разной формы и окраски. Различают три типа пластид: 1) хлоропласты, окрашенные в зеленый цвет; 2) хромопласты, окрашенные в желто-красные цвета; 3) лейкопласты, не имеющие окраски.

    Хлоропласты встречаются во всех зеленых органах растений. У высших растений пластид в клетках несколько десятков, у низших (водорослей) – 1-5. Они крупные, разнообразны по форме. В хлоропластах содержится до 75 % воды, белки, липиды, нуклеиновые кислоты, ферменты и красящие вещества – пигменты. Для образования хлорофилла необходимы определенные условия – свет, соли железа и магния в почве. От цитоплазмы хлоропласт отделен двойной мембранной оболочкой; тело его состоит из бесцветной мелкозернистой стромы.Строма пронизана параллельно расположенными пластинками – ламеллами, дисками. Диски собраны в стопки – граны. Основная функция хлоропластов – фотосинтез.

    Хромопласты встречаются в корнеплодах моркови, плодах многих растений (облепиха, шиповник, рябина и др.), в зеленых листьях шпината, крапивы, в цветках (розы, гладиолусы, календула), окраска которых зависит от присутствия в них пигментов каротиноидов: каротина – оранжево-красного цвета и ксантофилла – желтого цвета.

    Лейкопласты – бесцветные пластиды, пигменты отсутствуют. Они представляют собой белковые вещества в виде шаровидных, веретонообразных зернышек, концентрирующихся вокруг ядра. В них осуществляется синтез и накопление запасных питательных веществ, в основном крахмала, белков и жиров. Лейкопласты находятся в цитоплазме, эпидерме, молодых волосках, подземных органах растений и в тканях зародыша семени.

    Пластиды могут переходить из одного вида в другой.

    4. Ядро. Ядро – одно из главных органелл эукариотической клетки. В растительной клетке одно ядро. В ядре хранится и воспроизводится наследственная информация. Размеры ядра у разных растений разные, от 2-3 до 500 мкм. Форма чаще округлая или чечевицеобразная. В молодых клетках ядро крупнее, чем в старых, и занимает центральное положение. Ядро окружено двойной мембраной с порами, регулирующими обмен веществ. Наружная мембрана объединена с эндоплазматической сетью. Внутри ядра заключен ядерный сок – кариоплазма с хроматином, ядрышками и рибосомами. Хроматин – бесструктурная среда из особых нуклеопротеидных нитей, богатых ферментами. В хроматине сосредоточена основная масса ДНК. В процессе клеточного деления хроматин превращается в хромосомы – носители генов. Хромосомы образованы двумя одинаковыми нитями ДНК – хроматидами. Каждая хромосома в середине имеет перетяжку – центромеру. Число хромосом у разных растений неодинакова: от двух до нескольких сотен. Каждый вид растений имеет постоянный набор хромосом. В хромосомах синтезируются нуклеиновые кислоты, необходимые для образования белков. Совокупность количественных и качественных признаков хромосомного набора клетки называют кариотипом. Изменение числа хромосом происходит в результате мутаций. Наследственное кратное увеличение числа хромосом у растений получило название полиплоидии.

    Ядрышки – сферические, довольно плотные тельца диаметром 1-3 мкм. В ядре содержатся 1-2, иногда несколько ядрышек. Ядрышко является основным носителем РНК ядра. Основная функция ядрышка – синтез рРНК.

    Деление ядра и клетки. Размножение клеток происходит путем их деления. Период между двумя последовательными делениями составляет клеточный цикл. При делении клеток наблюдается рост растения и увеличение его общей массы. Существуют три способа деления клеток: митоз, или кариокинез (непрямое деление), мейоз (редукционное деление) и амитоз (прямое деление).

    Митоз характерен для всех клеток органов растений, кроме половых. В результате митоза растет и увеличивается общая масса растения. Биологическое значение митоза заключается в строго одинаковом распределении редуплицированных хромосом между дочерними клетками, что обеспечивает образование генетически равноценных клеток. Митоз впервые был описан русским ботаником И.Д.Чистяковым в 1874 г. В процессе митоза выделяют несколько фаз: профазу, метафазу, анафазу и телофазу. Промежуток между двумя делениями клетки называется интерфазой. В интерфазе осуществляется общий рост клетки, редупликация органоидов, синтез ДНК, формирование и подготовка структур к началу митотического деления.

    Профаза – самая длительная фаза митоза. В профазе хромосомы становятся видны в световой микроскоп. В профазе ядро претерпевает два изменения: 1. стадия плотного клубка; 2. стадия рыхлого клубка. В стадии плотного клубка хромосомы становятся видны в световой микроскоп, раскручиваются из клубка или из спирали и вытягиваются. Каждая хромосома состоит из двух хроматид, расположенных параллельно друг другу. Постепенно они укорачиваются, утолщаются и обособляются, исчезают ядерная оболочка и ядрышко. Ядро увеличивается в объеме. На противоположных полюсах клетки образуется ахроматиновое веретено – веретено деления, состоящее из неокрашивающихся нитей, протягивающихся от полюсов клетки (стадия рыхлого клубка).

    В метафазе заканчивается формирование веретена деления, хромосомы приобретают определенную форму того или иного вида растения и собираются в одной плоскости – экваториальной, на месте бывшего ядра. Ахроматиновое веретено постепенно сокращается, и хроматиды начинают отделяться друг от друга, оставаясь связанными в области центромеры.

    В анафазе происходит деление центромеры. Образовавшиеся сестринские центромеры и хроматиды направляются к противоположным полюсам клетки. Самостоятельные хроматиды становятся дочерними хромосомами, и, следовательно, их будет точно столько, сколько в материнской клетке.

    Телофаза – последняя фаза деления клетки, когда дочерние хромосомы достигают полюсов клетки, постепенно исчезает веретено деления, хромосомы удлиняются и становятся плохо заметными в световой микроскоп, в экваториальной плоскости формируется срединная пластинка. Постепенно образуется клеточная стенка и одновременно – ядрышки и ядерная оболочка вокруг двух новых ядер (1. стадия рыхлого клубка; 2. стадия плотного клубка). Образовавшиеся клетки вступают в очередную интерфазу.

    Длительность митоза примерно 1-2 часа. Процесс от момента образования срединной пластинки до формирования новой клетки называют цитокинезом. Дочерние клетки в два раза мельче материнских, но затем они растут и достигают размеров материнской клетки.

    Мейоз. Впервые был открыт русским ботаником В.И.Беляевым в 1885 г. Этот тип деления клеток связан с образованием спор и гамет, или половых клеток, имеющих гаплоидное число хромосом (n). Сущность его заключается в уменьшении (редукции) числа хромосом в 2 раза в каждой образовавшейся после деления клетке. Мейоз состоит из двух следующих друг за другом делений. Мейоз в отличие от митоза состоит из двух видов деления: редукционного (увеличение); экватоционного (митотическое деление). Редукционное деление происходит при первом делении, которое состоит из нескольких фаз: профаза I, метафаза I, анафаза I, телофаза I. В экватоционном делении различают: профаза II, метафаза II, анафаза II, телофаза II. В редукционном делении существует интерфаза.

    Профаза I. Хромосомы имеют форму длинных двойных нитей. Хромосома состоит из двух хроматид. Это стадия лептонемы. Затем гомологичные хромосомы притягиваются друг к другу, образуя пары – биваленты. Эта стадия называется зигонемой. Спаренные гомологичные хромосомы состоят из четырех хроматид, или тетрад. Хроматиды могут быть расположены параллельно друг другу либо перекрещиваться между собой, обмениваясь участками хромосом. Эта стадия получила название кроссинговера. В следующей стадии профазы I – пахинеме, хромосомные нити утолщаются. В следующей стадии – диплонеме – тетрады хроматид укорачиваются. Конъюгирующие хромосомы сближаются друг с другом так, что становятся неразличимыми. Исчезают ядрышко и ядерная оболочка, формируется ахроматиновове веретено. В последней стадии – диакинезе – биваленты направляются к экваториальной плоскости.

    Метафаза I. Биваленты располагаются по экватору клетки. Каждая хромосома прикреплена ахроматиновым веретеном к центромере.

    Анафаза I. Происходит сокращение нитей ахроматинового веретена, и гомологичные хромосомы в каждом биваленте расходятся к противоположным полюсам, причем на каждом полюсе окажется половинное число хромосом материнской клетки, т.е. происходит уменьшение (редукция) числа хромосом и образуются два гаплоидных ядра.

    Телофаза I. Эта фаза слабо выражена. Хромосомы деконденсируются; ядро принимает вид интерфазного, но в нем не происходит удвоения хромосом. Эта стадия называется интеркинезом. Она непродолжительная, у некоторых видов отсутствует, и тогда клетки сразу после телофазы I переходят в профазу II.

    Второе мейотическое деление происходит по типу митоза.

    Профаза II. Наступает быстро, вслед за телофазой I. Видимых изменений в ядре не происходит и сущность этой стадии заключается в том, что происходит рассасывание ядерных оболочек и появление четырех полюсов деления. Возле каждого ядра возникает два полюса.

    Метафаза II. Удвоенные хромосомы выстраиваются у своих экваторов и стадия носит название стадии материнской звезды или экваториальной пластинки. От каждого полюса деления отходят нити веретена деления, которые прикрепляются к хроматидам.

    Анафаза II. Полюса делений натягивают нити веретена деления, которые начинают рассасываться и натягивать удвоенные хромосомы. Наступает момент разрыва хромосом и расхождения их к четырем полюсам.

    Телофаза II. Вокруг каждого полюса у хромосом происходит стадия рыхлого клубка и стадия плотного клубка. После чего рассасываются центриоли и вокруг хромосом восстанавливаются ядерные оболочки и ядрышки. После чего делится и цитоплазма.

    Итогом мейоза является образование четырех дочерних клеток из одной материнской с гаплоидным набором хромосом.

    Для каждого вида растений характерно постоянное число хромосом и постоянная их форма. Среди высших растений часто встречается явление полиплоидии, т.е. многократное повторение в ядре одного набора хромосом (триплоиды, тетераплоиды и т.д.).

    В старых и больных клетках растений можно наблюдать прямое (амитоз) деление ядра путем простой его перетяжки на две части с произвольным количеством ядерного вещества. Впервые это деление было описано Н.Железновым в 1840 г.

    5. Производные протопласта. К производным протопласта относятся: 1) вакуоли; 2) включения; 3) клеточная стенка; 4) физиологически активные вещества: ферменты, витамины, фитогормоны и др.; 5) продукты обмена веществ.

    Вакуоли – полости в протопласте – производные эндоплазматической сети. Они ограничены мембраной – тонопластом и заполнены клеточным соком. Клеточный сок накапливается в каналах эндоплазматической сети в виде капелек, которые затем сливаются, образуя вакуоли. В молодых клетках содержится много мелких вакуолей, в старой клетке обычно присутствует одна крупная вакуоль. В клеточном соке растворены сахара (глюкоза, фруктоза, сахароза, инулин), растворимые белки, органические кислоты (щавелевая, яблочная, лимонная, винная, муравьиная, уксусная и др.), разнообразные гликозиды, дубильные вещества, алкалоиды (атропин, папаверин, морфин и др.), ферменты, витамины, фитонциды и др. В клеточном соке многих растений имеются пигменты – антоциан (красный, синий, фиолетовый цвет разных оттенков), антохлоры (желтый цвет), антофеины (темно-бурый цвет). В вакуолях семян содержатся белки-протеины. В клеточном соке растворены также многие неорганические соединения.

    Вакуоли – места отложений конечных продуктов обмена веществ.

    Вакуоли формируют внутреннюю водную среду клетки, с их помощью осуществляется регуляция водно-солевого обмена. Вакуоли поддерживают тургорное гидростатическое давление внутри клеток, что способствует поддержанию формы неодревесневших частей растений – листьев, цветков. Тургорное давление связано с избирательной проницаемостью тонопласта для воды и явлением осмоса – односторонней диффузией воды через полупроницаемую перегородку в сторону водного раствора солей большей концентрации. Поступающая в клеточный сок вода оказывает давление на цитоплазму, а через нее – на стенку клетки, вызывая упругое ее состояние, т.е. обеспечивая тургор. Нехватка воды в клетке ведет к плазмолизу, т.е. к сокращению объема вакуолей и отделению протопластов от оболочки. Плазмолиз может быть обратимым.

    Включения – вещества, образующиеся в результате жизнедеятельности клетки либо про запас, либо как отбросы. Включения локализуются либо в гиалоплазме и органоидах, либо в вакуоле в твердом или жидком состоянии. Включения представляют собой запасные питательные вещества, например, зерна крахмала в клубнях картофеля, луковицах, корневищах и в других органах растений, откладывающиеся в особом типе лейкопластов – амилопластах.

    Клеточная стенка – это твердое структурное образование, придающее каждой клетке форму и прочность. Она выполняет защитную роль, предохраняя клетку от деформации, противостоит высокому осмотическому давлению большой центральной вакуоли и препятствует разрыву клетки. Клеточная стенка - продукт жизнедеятельности протопласта. Первичная клеточная стенка образуется сразу после деления клеток и состоит в основном из пектиновых веществ и целлюлозы. Разрастаясь, она округляется, образуя межклетники, заполненные водой, воздухом или пектиновыми веществами. При отмирании протопласта мертвая клетка способна проводить воду и выполнять свою механическую роль. Клеточная стенка может разрастаться только в толщину. На внутренней поверхности первичной клеточной стенки начинает откладываться вторичная клеточная стенка. Утолщение бывает внутренним и наружным. Наружные утолщения возможны только на свободной поверхности, например, в виде шипов, бугорков и других образований (споры, пыльцевые зерна). Внутреннее утолщение представлено скульптурными утолщениями в виде колец, спиралей, сосудов и т.д. Неутолщенными остаются только поры – места во втроричной стенке клетки. Через поры по плазмодесмам – тяжам цитоплазмы – осуществляется обмен веществ между клетками, передается раздражение из одной клетки в другую и т.д. Поры бывают простые и окаймленные. Простые поры встречаются в паренхимных и прозенхимных клетках, окаймленные – сосудах и трахеидах, проводящих воду и минеральные вещества.

    Вторичная клеточная стенка построена главным образом из целлюлозы, или клетчатки (С 6 Н 10 О 5)n – очень стойкого вещества, нерастворимого в воде, кислотах и щелочах.

    С возрастом клеточные стенки претерпевают видоизменения, пропитываются различными веществами. Типы видоизменений: опробковение, одревеснение, кутинизация, минерализация и ослизнение. Так, при опробковении клеточные стенки пропитываются особым веществом суберином, при одревеснении – лигнином, при кутинизации – жироподобным веществом кутином, при минерализации – минеральными солями, чаще всего углекислым кальцием и кремнеземом, при ослизнении клеточные стенки поглощают большое количество воды и сильно разбухают.

    Ферменты, витамины, фитогормоны. Ферменты – это органические катализаторы белковой природы, присутствуют во всех органоидах и компонентах клетки.

    Витамины – органические вещества разного химического состава, присутствуют в качестве компонентов в ферментах и выполняют роль катализаторов. Витамины обозначаются заглавными буквами латинского алфавита: А, В, С, D и др. Различают водорастворимые витамины (В, С, РР, Н и др.) и жирорастворимые (А, D, Е).

    Водорастворимые витамины находятся в клеточном соке, а жирорастворимые – в цитоплазме. Известно более 40 витаминов.

    Фитогормоны – физиологически активные вещества. Наиболее изучены гормоны роста – ауксин и гиббереллин.

    Жгутики и реснички. Жгутики – двигательные приспособления у прокариот и у большинства низших растений.

    Реснички имеют многие водоросли, мужские половые клетки высших растений, за исключением покрытосеменных и части голосеменных.

    Растительная клетка состоит из более или менее жесткой клеточной оболочки и протопласта. Клеточная оболочка – это клеточная стенка и цитоплазматическая мембрана. Термин протопласт происходит от слова протоплазма, которое долгое время использовалось для обозначения всего живого. Протопласт – это протоплазма индивидуальной клетки.

    Протопласт состоит из цитоплазмы и ядра. В цитоплазме находятся органеллы (рибосомы, микротрубочки, пластиды, митохондрии) и мембранные системы (эндоплазматический ретикулум, диктиосомы). Цитоплазма включает в себя еще цитоплазматический матрикс ( основное вещество ) в которое погружены органеллы и мембранные системы. От клеточной стенки цитоплазма отделена плазматической мембраной , которая представляет собой элементарную мембрану. В отличие от большинства животных клеток растительные клетки содержат одну или несколько вакуолей . Это пузырьки, заполненные жидкостью и окруженные элементарной мембраной ( тонопластом).

    В живой растительной клетке основное вещество находится в постоянном движении. В движение, называемое током цитоплазмы или циклозом, вовлекается органеллы. Циклоз облегчает передвижение веществ в клетке и обмен ими между клеткой и окружающей средой.

    Плазматическая мембрана. Представляет собой бислойную фосфолипидную структуру. Для растительных клеток свойственны впячивания плазматической мембраны.

    Плазматическая мембрана выполняет следующие функции:

    Участвует в обмене веществ между клеткой и окружающей средой;

    Координирует синтез и сборку целлюлозных микрофибрилл клеточной стенки;

    Передает гормональные и внешние сигналы, контролирующие рост и дифференцировку клеток.

    Ядро. Это наиболее заметная структура в цитоплазме эукариотической клетки. Ядро выполняет две важные функции:

    Контролирует жизнедеятельность клетки, определяя, какие белки, и в какое время должны синтезироваться;

    Хранит генетическую информацию и передает её дочерним клеткам в процессе клеточного деления.

    Ядро эукариотической клетки окружено двумя элементарными мембранами, образующие ядерную оболочку. Она пронизана многочисленными порами диаметром от 30 до 100 нм, видимыми только в электронный микроскоп. Поры имеют сложную структуру. Наружная мембрана ядерной оболочки в некоторых местах объединяется с эндоплазматическим ретикулумом. Ядерную оболочку можно рассматривать как специализированную, локально дифференцированную часть эндоплазматического ретикулума (ЭР).

    В окрашенном специальными красителями ядре можно различить тонкие нити и глыбки хроматина и нуклеоплазму (основное вещество ядра). Хроматин состоит из ДНК, связанной со специальными белками – гистонами. В процессе клеточного деления хроматин все более уплотняется и собирается в хромосомы. В ДНК закодирована генетическая информация.

    Организмы различаются по числу хромосом в соматических клетках. Например, капуста имеет – 20 хромосом; подсолнечник – 34; пшеница – 42; человек – 46, а один из видов папоротника Ophioglossum – 1250. Половые клетки (гаметы) имеют только половину количества хромосом, характерных для соматических клеток организма. Число хромосом в гаметах называют гаплоидным (одинарным), в соматических клетках – диплоидным (двойным). Клетки, имеющие более двух наборов хромосом, называются полиплоидными .

    Под световым микроскопом можно рассмотреть сферические структуры – ядрышки . В каждом ядре имеется одно или несколько ядрышек, которые заметны в неделящихся ядрах. В ядрышках синтезируются рибосомные РНК. Обычно в ядрах диплоидных организмов имеется два ядрышка по одному для каждого гаплоидного набора хромосом. Ядрышки не имеют собственной мембраны. Биохимически ядрышки характеризуются высокой концентрацией РНК, которая здесь связана с фосфопротеидами. Размер ядрышек зависит от функционального состояния клетки. замечено, что у быстро растущей клетки, в которой идут интенсивные процессы синтеза белка, ядрышки увеличиваются в размерах. В ядрышках продуцируются иРНК и рибосомы, выполняющие синтетическую функцию только в ядре.

    Нуклеоплазма (кариоплазма) представлена гомогенной жидкостью, в которой растворены различные белки, в том числе и ферменты.

    Митохондрии. Как и хлоропласты, митохондрии окружены двумя элементарными мембранами. Внутренняя мембрана образует множество складок и выступов – крист, которые значительно увеличивают внутреннюю поверхность митохондрии. Они значительно меньше, чем пластиды, имеют около 0,5 мкм в диаметре и разнообразны по длине и форме.

    В митохондриях осуществляется процесс дыхания, в результате которого органические молекулы расщепляются с высвобождением энергии и передачей её молекулам АТФ, основного резерва энергии всех эукариотических клеток. Большинство растительных клеток содержит сотни и тысячи митохондрий. Их число в одной клетке определяется потребностью клетки в АТФ. Митохондрии находятся в постоянном движении, перемещаясь из одной части клетки в другую, сливаясь друг с другом делятся. Митохондрии обычно собираются там, где нужна энергия. Если плазматическая мембрана активно переносит вещества из клетки в клетку, то митохондрии располагаются вдоль поверхности мембраны. У подвижных одноклеточных водорослей митохондрии скапливаются у оснований жгутиков, поставляя энергию, необходимую для их движения.

    Митохондрии, как и пластиды, являются полуавтономными органеллами, содержащими компонентами, необходимые для синтеза собственных белков. Внутренняя мембрана окружает жидкий матрикс, в котором находятся белки, РНК, ДНК, рибосомы, сходные с бактериальными и различные растворенные вещества. ДНК существует в виде кольцевых молекул, располагающихся в одном или нескольких нуклеоидах.

    На основании сходства бактерий с митохондриями и хлоропластами эукариотических клеток можно предположить, что митохондрии и хлоропласты произошли от бактерий, которые нашли «убежище» в более крупных гетеротрофных клетках - предшественниках эукариот.

    Микротельца. В отличие от пластид и митохондрий, которые отграничены двумя мембранами, микротельца представляют собой сферические органеллы, окруженные одной мембраной. Микротельца имеют гранулярное (зернистое) содержимое, иногда в них встречаются и кристаллические белковые включения. Микротельца связаны с одним или двумя участками эндоплазматического ретикулума.

    Некоторые микротельца, называемые проксисомами, играют важную роль в метаболизме гликолевой кислоты, имеющем непосредственное отношение к фотодыханию. В зеленых листьях они связаны с митохондриями и хлоропластами. Другие микротельца, называемые, глиоксисомами, содержат ферменты, необходимые для превращения жиров в углеводы. Это происходит во многих семенах во время прорастания.

    Вакуоли – это отграниченные мембраной участки клетки, заполненные жидкостью – клеточным соком. Они окружены тонопластом (вакуолярной мембраной).

    Молодая растительная клетка содержит многочисленные мелкие вакуоли, которые по мере старения клетки сливаются в одну большую. В зрелой клетке вакуолью может быть занято до 90% её объема. При этом цитоплазма прижата в виде тонкого периферического слоя к клеточной оболочке. Увеличение размера клетки в основном происходит за счет роста вакуоли. В результате этого возникает тургорное давление и поддерживается упругость ткани. В этом заключается одна из основных функций вакуоли и тонопласта.

    Основной компонент сока – вода, остальные варьируют в зависимости от типа растения и его физиологического состояния. Вакуоли содержат соли, сахара, реже белки. Тонопласт играет активную роль в транспорте и накоплении в вакуоли некоторых ионов. Концентрация ионов в клеточном соке может значительно превышать ее концентрацию в окружающей среде. При высоком содержании некоторых веществ в вакуолях образуются кристаллы. Чаще всего встречаются кристаллы оксалата кальция, имеющие различную форму.

    Вакуоли – места накопления продуктов обмена веществ (метаболизма). Это могут быть белки, кислоты и даже ядовитые для человека вещества (алкалоиды). Часто откладываются пигменты. Голубой, фиолетовый, пурпурный, темно-красный, пунцовый придают растительным клеткам пигменты из группы антоцианов. В отличие от других пигментов они хорошо растворяются в воде и содержатся в клеточном соке. Они определяют красную и голубую окраску многих овощей (редис, турнепс, капуста), фруктов (виноград, сливы, вишни), цветов (васильки, герани, дельфиниумы, розы, пионы). Иногда эти пигменты маскируют в листьях хлорофилл, например, у декоративного красного клена. Антоцианы окрашивают осенние листья в ярко-красный цвет. Они образуются в холодную солнечную погоду, когда в листьях прекращается синтез хлорофилла. В листьях, когда антоцианы не образуются, после разрушения хлорофилла заметными становятся желто-оранжевые каротиноиды хлоропластов. Наиболее ярко окрашены листья холодной ясной осенью.

    Вакуоли участвуют в разрушении макромолекул, в круговороте их компонентов в клетке. Рибосомы, митохондрии, пластиды, попадая в вакуоли, разрушаются. По этой переваривающей активности их можно сравнить с лизосомами – органеллами животных клеток.

    Вакуоли образуются из эндоплазматической сети (ретикулума)

    Рибосомы. Маленькие частицы (17 – 23нм), состоящие примерно из равного количества белка и РНК. В рибосомах аминокислоты соединяются с образованием белков. Их больше в клетках с активным обменом веществ. Рибосомы располагаются в цитоплазме клетки свободно или же прикрепляются к эндоплазматическому ретикулуму (80S). Их обнаруживают и в ядре (80S), митохондриях (70S), пластидах (70S).

    Рибосомы могут образовывать комплекс, на которых происходит одновременный синтез одинаковых полипептидов, информация о которых снимается с одной молекулы и РНК. Такой комплекс называется полирибосомами (полисомами). Клетки, синтезирующие белки в больших количествах, имеют обширную систему полисом, которые часто прикрепляются к наружной поверхности оболочки ядра.

    Эндоплазматический ретикулум. Это сложная трехмерная мембранная система неопределенной протяженности. В разрезе ЭР выглядит как две элементарные мембраны с узким прозрачным пространством между ними. Форма и протяженность ЭР зависят от типа клетки, ее метаболической активности и стадии дифференцировки. В клетках, секретирующих или запасающих белки, ЭР имеет форму плоских мешочков или цистерн, с многочисленными рибосомами, связанными с его внешней поверхностью. Такой ретикулум называется шероховатым эндоплазматическим ретикулумом. Гладкий ЭР обычно имеет трубчатую форму. Шероховатый и гладкий эндоплазматические ретикулумы могут присутствовать в одной и той же клетке. Как правило, между ними имеются много численные связи.

    Эндоплазматический ретикулум функционирует как коммуникационная система клетки. Он связан с внешней оболочкой ядра. Фактически эти две структуры образуют единую мембранную систему. Когда ядерная оболочка во время деления клетки разрывается, ее обрывки напоминают фрагменты ЭР. Эндоплазматический ретикулум – это система транспортировки веществ: белков, липидов, углеводов, в разные части клетки. эндоплазматические ретикулумы соседних клеток соединяются через цитоплазматические тяжи – плазмодесмы – которые проходят сквозь клеточные оболочки.

    Эндоплазматический ретикулум – основное место синтеза клеточных мембран. В некоторых растительных клетках здесь образуются мембраны вакуолей и микротелец, цистерны диктиосом.

    Микротрубочки обнаружены практически во всех эукариотических клетках. Представляют собой цилиндрические структуры диаметром около 24 нм. Длина их варьирует. Каждая трубочка состоит из субъединиц белка, называемого тубулином. Субъединицы образуют 13 продольных нитей, окружающих центральную полость. Микротрубочки – это динамические структуры, они регулярно разрушаются и образуются на определенных стадиях клеточного цикла. Их сборка происходит в особых местах, которые называются центрами организации микротрубочек. В растительных клетках они имеют слабовыраженную аморфную структуру.

    Функции микротрубочек: участвуют в образовании клеточной оболочки; направляют пузырьки диктиосом к формирующейся оболочке, подобно нитям веретена, которые образуются в делящейся клетке; играют определенную роль в формировании клеточной пластинки (первоначальной границы между дочерними клетками). Кроме того, микротрубочки – важный компонент жгутиков и ресничек, в движении которых, играют немаловажную роль.

    Микрофиламенты, подобно микротрубочкам, найдены практически во всех эукариотических клетках. Представляют собой длинные нити толщиной 5 – 7 нм, состоящие из сократительного белка актина. Пучки микрофиламентов встречаются во многих клетках высших растений. По-видимому, играют важную роль в токах цитоплазмы. Микрофиламенты вместе с микротрубочками образуют гибкую сеть, называемую цитоскелетом.

    Основное вещество довольно долго считали гомогенным (однородный) богатым белком раствором с малым количеством структур или вообще бесструктурным. Однако в настоящее время, используя высоковольтный электронный микроскоп, было установлено, что основное вещество представляет трехмерную решетку, построенную из тонких (диаметром 3 – 6 нм) тяжей, заполняющих всю клетку. Другие компоненты цитоплазмы, включая микротрубочки и микрофиламенты, подвешены к этой микротрабекулярной решетке.

    Микротрабекулярная структура представляет собой решетку из белковых тяжей, пространство между которыми заполнено водой. Вместе с водой решетка имеет консистенцию геля, гель имеет вид студенистых тел.

    К микротрабекулярной решетке прикреплены органеллы. Решетка осуществляет связь между отдельными частями клетки и направляет внутриклеточный транспорт.

    Липидные капли – структуры сферической формы, придающие гранулярность цитоплазме растительной клетки под световым микроскопом. На электронных микрофотографиях они выглядят аморфными. Очень похожие, но более мелкие капли встречаются в пластидах.

    Липидные капли, принимая за органеллы, называли их сферосомами и считали, что они окружены одно- или двуслойной мембраной. Однако последние данные показывают, что у липидных капель мембран нет, но они могут быть покрыты белком.

    Эргастические вещества – это «пассивные продукты» протопласта: запасные вещества или отходы. Они могут появляться и исчезать в разные периоды клеточного цикла. Кроме зерен крахмала, кристаллов, антоциановых пигментов и липидных капель. К ним относятся смолы, камеди, танины и белковые вещества. Эргастические вещества входят в состав клеточной оболочки, основного вещества цитоплазмы и органелл, в том числе вакуолей.

    Жгутики и реснички – это тонкие, похожие на волоски структуры, которые отходят от поверхности многих эукариотических клеток. Имеют постоянный диаметр, но длина колеблется от 2 до 150 мкм. Условно более длинные и немногочисленные из них называют жгутиками, а более короткие и многочисленные - ресничками. Четких различий между этими двумя типами структур не существует, поэтому для обозначения обоих используют термин жгутик.

    У некоторых водорослей и грибов жгутики являются локомоторными органами, с помощью которых они передвигаются в воде. У растений (например, мхов, печеночников, папоротников, некоторых голосеменных) только половые клетки (гаметы) имеют жгутики.

    Каждый жгутик имеет определенную организацию. Наружное кольцо из 9 пар микротрубочек окружает две дополнительные микротрубочки, расположенные в центре жгутика. Содержащие ферменты «ручки» отходят от одной микротрубочки каждой из наружных пар. Это основная схема организации 9 + 2 обнаружена во всех жгутиках эукариотических организмов. Считают, что движение жгутиков основано на скольжении микротрубочек, при этом наружные пары микротрубочек движутся одна вдоль другой без сокращения. Скольжение пар микротрубочек относительно друг друга вызывает локальное изгибание жгутика.

    Жгутики «вырастают» из цитоплазматических цилиндрических структур, называемых базальными тельцами, образующимися и базальную часть жгутика. Базальные тельца имеют внутреннее строение, напоминающее строение жгутика, за исключением того, что наружные трубочки собраны в тройки, а не в пары, а центральные трубочки отсутствуют.

    Плазмодесмы. Это тонкие нити цитоплазмы, которые связывают между собой протопласты соседних клеток. Плазмодесмы либо проходят сквозь клеточную оболочку в любом месте, либо сосредоточены на первичных поровых полях или в мембранах между парами пор. Под электронным микроскопом плазмодесмы выглядят как узкие каналы, выстланные плазматической мембранной. По оси канала из одной клетки в другую тянется цилиндрическая трубочка меньшего размера – десмотрубочка, которая сообщается с эндоплазматическим ретикулумом обеих смежных клеток. Многие плазмодесмы формируются во время клеточного деления, когда трубчатый эндоплазматический ретикулум захватывается развивающейся клеточной пластинкой. Плазмодесмы могут образовываться и в оболочках неделящихся клеток. Эти структуры обеспечивают эффективный перенос некоторых веществ от клетки к клетке.

    Деление клеток. У многоклеточных организмов деление клеток наряду с увеличением их размеров является способом роста всего организма. Новые клетки, образовавшиеся во время деления, сходны по структуре и функциям, как с родительской клеткой, так и между собой. Процесс деления у эукариот можно подразделить на две частично перекрывающиеся стадии: митоз и цитокинез.

    Митоз – это образование из одного ядра двух дочерних ядер, морфологически и генетически эквивалентных друг другу. Цитокинез – это деление цитоплазматической части клетки с образованием дочерних клеток.

    Клеточный цикл. Живая клетка проходи ряд последовательных событий, составляющих клеточный цикл. Продолжительность самого цикла варьирует в зависимости от типа клетки и внешних факторов, например от температуры или обеспеченности питательными веществами. Обычно цикл делится на интерфазу и четыре фазы митоза.

    Интерфаза. Период между последовательными митотическими делениями.

    Интерфазу делят на три периода, обозначаемые как G 1 , S, G 2 .

    В период G 1 , который начинается после митоза. В этот период увеличивается количество цитоплазмы, включая различные органеллы. Кроме того, согласно современной гипотезе, в период G 1 синтезируются вещества, которые либо стимулируют, либо ингибируют период S и остальную часть цикла, определяя, таким образом, процесс деления.

    В период S следует за периодом G 1, в это время происходит удвоение генетического материала (ДНК).

    В период G 2, который следует за S, формируются структуры, непосредственно участвующие в митозе, например, компоненты веретена.

    Некоторые клетки проходит неограниченный ряд клеточных циклов. Это одноклеточные организмы и некоторые клетки зон активного роста (меристем). Некоторые специализированные клетки после созревания теряет способность к размножению. Третья группа клеток, например образующих раневую ткань (каллус), сохраняет способность делиться только в специальных условиях.

    Митоз, или деление ядра. Это непрерывный процесс, подразделяемый на четыре фазы: профазу, метафазу, анафазу, телофазу. В результате митоза генетический материал, удвоившийся в интерфазе, делится поровну между двумя дочерними ядрами.

    Одним из самых ранних признаков перехода клетки к делению служит появление узкого, кольцеобразного пояска из микротрубочек непосредственно под плазматической мембраной. Это относительно плотный поясок окружает ядро в экваториальной плоскости будущего митотического веретена. Так как он проявляется перед профазой, его называют препрофазным пояском. Он исчезает после митотического веретена, задолго до появления в поздней телофазе клеточной пластинки, которая растет от центра к периферии и сливается с оболочкой материнской клетки в области, ранее занятой препрофазным пояском.

    Профаза. В начале профазы хромосомы напоминают длинные нити, разбросанные внутри ядра. Затем, по мере того как нити укорачиваются и утолщаются, можно увидеть, что каждая хромосома состоит не из одной, а из двух переплетенных нитей, называемых хроматидами. В поздней профазе две укороченные спаренные хроматиды каждой хромосомы лежат рядом параллельно, соединённые узким участком, называемым центромерой. Она имеет определённое положение на каждой хромосоме и делит хромосому на два плеча различной длины.

    Микротрубочки располагаются параллельно поверхности ядра вдоль оси веретена. Это само раннее проявление сборки митотического веретена.

    К концу профазы ядрышко постепенно теряет чёткие очертания и наконец исчезает. Вскоре после этого распадается и ядерная оболочка.

    Метафаза. В начале метафазы веретено, которое представляет трёхмерную структуру, наиболее широкую в средине и суживающуюся к полюсам, занимает место, прежде занятое ядром. Нити веретена – это пучки микротрубочек. Во время метафазы хромосомы, состоящие из двух хроматид каждая, располагаются так, что их центромеры лежат в экваториальной плоскости веретена. Своей центромерой каждая хромосома прикрепляется к нитям веретена. Однако, некоторые нити проходят от одного полюса к другому, не прикрепляясь к хромосомам.

    Когда все хромосомы расположатся в экваториальной плоскости, метафаза завершится. Хромосомы готовы к делению.

    Анафаза. Хроматиды каждой хромосомы расходятся. Теперь это дочерние хромосомы. Прежде всего, делится центромера, и две дочерние хромосомы увлекаются к противоположным полюсам. При этом центромеры движутся впереди, а плечи хромосом тянутся сзади. Нити веретена, прикрепленные к хромосомам, укорачиваются, способствуя расхождению хроматид и движению дочерних хромосом в противоположные стороны.

    Телофаза. В телофазе завершается обособление двух идентичных групп хромосом, при этом вокруг каждой из них формируется ядерная мембрана. В этом активное участие принимает шероховатый ретикулум. Аппарат веретена исчезает. В ходе телофазы хромосомы теряют чёткость очертаний, вытягиваются, превращаясь снова в тонкие нити. Ядрышки восстанавливаются. Когда хромосомы становятся невидимыми, митоз завершается. Два дочерние ядра вступают в интерфазу. Они генетически эквивалентны друг другу и материнскому ядру. Это очень важно, так как генетическая программа, а вместе с ней и все признаки должны быть переданы дочерним организмам.

    Продолжительность митоза варьирует у различных организмов и она зависит от типа ткани. Однако профаза самая длинная, а анафаза самая короткая. В клетках кончика корня продолжительность профазы составляет 1 – 2 ч; метафазы – 5 – 15 мин; анафазы – 2 – 10 мин; телофазы – 10 – 30 мин. Продолжительность интерфазы составляет от 12 до 30 ч.

    Во многих эукариотических клетках центры организации микротрубочек, ответственные за формирование митотического веретена, связаны с центриолями .

    

    Клетка – наименьшая структурная и биологическая единица живой материи. Ей присущи все жизненноважные процессы: питание, дыхание, рост, раздражимость, размножение, наследственность. Она появилась на определенном этапе эволюции как результат совершенствования живого вещества. Количество клеток в организмах варьирует от одной до нескольких миллиардов. Если клетка одна, то она выступает в роли целостного организма и выполняет все его функции.

    Впервые термин «клетка» предложил Роберт Гук в 1665 году. Значительный вклад в изучение растительной клетки внесли ученые М. Мальпиги (итал.), Н. Грю (англ.), М. Шлейден и Т. Шванн (немец.). Именно Шлейден и Шванн, опираясь на собственные исследования и исследования других ученых, показали, что клеточное строение присуще всем живым организмам (клеточная теория, 1839 г.).

    Рассмотрим обобщенное строение растительной клетки.

    Снаружи растительная клетка покрыта клеточной оболочкой (стенкой) . Она образуется из веществ, вырабатываемых цитоплазмой, которые откладываются снаружи от нее, создавая оболочку (пектин, гемицеллюлоза и целлюлоза). Так образуется первичная оболочка. Она эластична, росту клетки не препятствует, создает прочность и придает определенную форму, защищает содержимое от механических повреждений. У многих клеток образуется и вторичная оболочка. Она формируется под первичной оболочкой и состоит из целлюлозы. Клетки со вторичной оболочкой более прочные и могут выполнять механическую функцию. В оболочке имеются неутолщенные места – поры. Через них проходят тонкие тяжи цитоплазмы, по которым осуществляется обмен веществ между соседними клетками.

    Видоизменения клеточной стенки:

    Одревеснение – оболочка пропитывается лигнином, который выполняет роль цемента, придает твердость и прочность (характерно для клеток механической ткани и древесины);

    Опробковение – оболочка пропитывается суберином (жироподобным веществом), прекращается доступ воды и газов. Содержимое клетки отмирает, она заполняется воздухом и выполняет функцию термоизоляции (покровная ткань пробкового дуба);

    Кутинизация – клетки эпидермиса пропитываются кутином и воском. Функции: уменьшение транспирации, отражение света, защита от УФ лучей и инфицирования микроорганизмами;

    Минерализация – пропитывание оболочки минеральными солями (например, кальция). Это придает клеткам жесткость, твердость, растения не поедаются животными (хвощи, осоки);

    Ослизнение – набухание пектиновых веществ в оболочке (клетки кожицы семян при прорастании, оболочки клеток при ранении).

    Все содержимое клетки делят на 2 части:

    Протопласт (живое содержимое);


    Производные протопласта (неживое содержимое).

    Протопласт представляет собой цитоплазму с заключенными в нее органоидами (ядро, пластиды, митохондрии, аппарат Гольджи, сферосомы, рибосомы, эндоплазматический ретикулум, лизосомы). Количество органоидов и их состав зависят от функции, специфики жизнедеятельности клетки и от ее возраста.

    Под клеточной стенкой находится цитоплазма. Ее наружный слой – плазмалемма – представляет собой мембрану, которая обеспечивает избирательное проникновение веществ в клетку и из нее. Она имеет типичное для мембран трехслойное строение. Внешний и внутренний слой состоит из одного ряда белковых молекул и между ними два ряда липидов. Мембрана имеет тончайшие сквозные отверстия через которые могут проходить одни вещества и задерживаться другие (обладает полупроницаемостью).

    Продолжением мембраны плазмалеммы является эндоплазматическая сеть (ретикулум) , которая представляет собой сеть каналов и полостей. ЭПС является конвейером для синтеза и перемещения веществ по клетке. Начинаясь от плазмалеммы, она подходит к различным органоидам и наружной оболочке ядра. С каналами ЭПС соединен аппарат Гольджи . Он выполняет функцию накопления и постепенного выведения из клетки синтезированных веществ.

    Энергетическими станциями клеток являются митохондрии. Они состоят из двух мембран. В них осуществляется дыхание клетки, в результате чего выделяется энергия. Она связывается, переходя в энергию фосфатной связи АТФ. Количество митохондрий зависит от активности клетки, ее возраста и физиологического состояния.

    Лизосомы – мелкие округлые тельца, имеющие очень прочную мембрану. В матриксе лизосомы находятся сильные по активности ферменты, переваривающие пищевые вещества и разрушающие отмершие части клетки.

    Сферосомы – по форме, размерам сходны с лизосомами, внутри находится белковый матрикс. Основная функция – накопление масел.

    В цитоплазме клеток присутствуют микротрубочки , участвующие в образовании клеточной оболочки делящихся клеток.

    Рибосомы – небольшие тельца шаровидной или слегка уплощенной формы, в строении отсутствует мембранная система. Основная функция – синтез белка.

    Пластиды – органоиды, присущие только растительным клеткам. Это крупные двух-мембранные органоиды, хорошо видимые в световой микроскоп. По цвету и выполняемым функциям различают три типа:

    1). Хлоропласты: имеют форму двояковыпуклой линзы. Снаружи они покрыты оболочкой, состоящей из двух мембран. Внешняя мембрана гладкая, внутренняя имеет выросты в виде пластинок. Эти пластинки называются ламеллы. Они лежат друг на друге правильными стопками, напоминающими столбики монет, и называются гранами. Во внутренних мембранах локализованы фотосинтетические пигменты (у высших растений – хлорофилл а и b, у водорослей возможно появление хлорофилла c, d, e). Хлорофилл придает зеленую окраску хлоропластам. В хлоропластах есть и другие пигменты: красно-оранжевый – каротин и желтый – ксантофилл, но они не видны под преобладающей массой хлорофилла.

    2). Хромопласты: крупнее хлоропластов. Это пластиды красно-оранжевого и желтого цветов. Красящие пигменты группы каротиноидов (их более 50, но наиболее распространены каротин и ксантофилл). Они придают окраску лепесткам цветов, плодам, корнеплодам.

    3). Лейкопласты: не имеют пигмента, бесцветны. Образуются в органах, скрытых от солнечного света. Их функция – синтез и накопление запасных питательных веществ.

    Важнейшим органоидом любой эукариотической клетки является ядро. Оно содержит генетическую информацию клетки, контролирует ее жизнедеятельность, влияя на синтез белков. Ядро отделено от цитоплазмы двумембранной оболочкой. Оболочка пронизана порами, через которые осуществляется связь с каналами ЭПС и, тем самым, обеспечивается контакт ядра с цитоплазмой. Ядро состоит из ядерного сока, представляющего смесь белков-ферментов, нуклеотидов и аминокислот, хромосом , построенных из молекул ДНК и содержащих генный материал, и ядрышка , осуществляющего синтез РНК и сборку рибосом.

    Для растительной клетки характерно наличие вакуолей . Часто они занимают почти весь объем клетки. У молодых клеток их несколько. По мере развития клетки они разрастаются и сливаются в одну. Содержимое – клеточный сок – водный раствор многих веществ: сахаров, аминокислот, пигментов, витаминов и др. Все эти вещества продукты жизнедеятельности клетки.

    Мембрана, отделяющая цитоплазму от вакуолей, называется внутренней или тонопласт. Ее функция – транспортная.

    Таким образом, растительной клетке свойственны все признаки обычной эукариотической клетки.

    Различия в строении растительной и животной клеток:

    В растительной клетке хорошо развита клеточная оболочка;

    Растительная клетка содержит пластиды (на этом основании большинство растений относят к автотрофам);

    В растительной клетке всегда присутствуют вакуоли: несколько маленьких у молодых клеток, или одна большая - у взрослых.