Этапы системного исследования (моделирования). Моделирование систем Какие этапы проходит процесс создания модели

Процесс моделирования делится на четыре этапа.

Первый заключается в построении модели, исходя из наличия некоторых знаний об объекте-оригинале. На этом же этапе решается вопрос о необходимой и достаточной мере сходства оригинала и модели. Очевидно, модель утрачивает свой смысл как в случае тождества с оригиналом (тогда она перестает быть моделью), так и в случае чрезмерного во всех существенных отношениях отличия от оригинала. Следовательно, создаваемая модель должна отражать не все, а лишь наиболее важные свойства объекта-оригинала. Определение степени важности свойств зависит от целей исследования и определяется субъектом (исследователем).

Поскольку модель и объект-оригинал не тождественны друг другу, то на первом же этапе построения модели исследователь формирует список допущений модели. Этот список представляет собой перечень отличий модели от оригинала.

Итак, изучение одних сторон моделируемого объекта осуществляется ценой отказа от отражения других сторон. Поэтому любая модель замещает оригинал лишь в строго ограниченном смысле. Для одного и того же объекта может быть построено несколько "специализированных" моделей, концентрирующих внимание на определенных сторонах исследуемого объекта или же характеризующих объект с разной степенью детализации.

На втором этапе процесса моделирования модель выступает как самостоятельный объект исследования. Одной из форм такого исследования является проведение "модельных" экспериментов, при которых сознательно изменяются условия функционирования модели и систематизируются данные о ее "поведении". Конечным результатом этого этапа является множество (совокупность) знаний о поведении модели

На третьем этапе осуществляется перенос знаний, полученных в результате модельных экспериментов второго этапа, с модели на оригинал. При этом важно учитывать следующие обстоятельства: если построении какой-либо результат связан с признаками сходства оригинала и модели, то его можно переносить на оригинал. Если же определенный результат модельного исследования связан с отличием модели от оригинала (неадекватностью), то этот результат переносить неправомерно.

Четвертый этап - практическая проверка знаний, получаемых с помощью модели, и их использование для построения обобщающей теории объекта, его преобразования или управления им

Процесс моделирования – процесс циклический. Это означает, что за первым четырехэтапным циклом может последовать второй, третий ит.д. При этом знания об исследуемом объекте расширяются и уточняются, а исходная модель постепенно совершенствуется. Недостатки, обнаруженные после первого цикла моделирования, обусловленные малым знанием объекта и ошибками в построении модели, можно исправить в последующих циклах. В методологии моделирования, таким образом, заложены большие возможности саморазвития.

Теория моделирования является одной из составляющих теории автоматизации процессов управления. Одним из ее основополагающих принципов является утверждение: система представляется конечным множеством моделей, каждая из которых отражает определенную грань её сущности.

К настоящему времени накоплен значительный опыт, дающий основание сформулировать основные принципы построения моделей. Не смотря на то, что при построении моделей очень велика роль опыта, интуиции, интеллектуальных качеств исследователя, все же многие ошибки и неудачи в практике моделирования обусловлены незнанием методологии моделирования и несоблюдением принципов построения моделей.

К основным из них можно отнести:

Принцип соответствия модели целям исследования;

Принцип соответствия сложности модели требуемой точности результатов моделирования;

Принцип экономичности модели;

Принцип соразмерности;

Принцип модульности построения моделей;

Принцип открытости;

Принцип коллективности разработки (в создании модели принимают участие специалисты предметной области и в области моделирования);

Принцип сервисности (удобства пользования моделью).

Для одной и той же системы можно построить множество моделей. Эти модели будут отличаться степенью детализации и учета тех или иных особенностей и режимов функционирования реального объекта, отражать определенную грань сущности системы, ориентироваться на исследование определенного свойства или группы свойств системы. Поэтому важно четко сформулировать цель моделирования уже на начальном этапе построения модели. При этом следует также учитывать, что модель строится для решения конкретной задачи исследования. Опыт создания универсальных моделей не оправдал себя ввиду громоздкости создаваемых моделей и их непригодности к практическому применению. Для решения каждой конкретной задачи нужно иметь свою модель, отражающую наиболее важные стороны и связи с точки зрения исследования. Важность конкретного задания целей моделирования диктуется еще и тем, что все последующие этапы моделирования проводятся с ориентацией на определенную цель исследования.

Модель носит всегда приближенный характер по сравнению с оригиналом. Каким должно быть это приближение? Излишняя детализация усложняет модель, делает её дороже, затрудняет исследование. Необходимо найти компромисс между степенью сложности модели и ее адекватностью моделируемому объекту.

В общем плане проблема “точность - сложность” формулируется в виде одной из двух оптимизационных задач:

Задается точность результатов моделирования, а затем минимизируется сложность модели;

Имея модель определенной сложности, стремятся обеспечить максимальную точность результатов моделирования.

Уменьшение числа характеристик, параметров, возмущаю­щих факторов. Конкретизируя цели моделирования из множества характеристик системы либо исключают те, которые могут быть определены без моделирования или являются, с точки зрения ис­следователя, второстепенными, либо производится их объединение. Возможность реализации таких процедур связана с тем обстоя­тельством, что при моделировании не всегда целесообразно учиты­вать всё многообразие возмущающих факторов. Допускается неко­торая идеализация условий функционирования. Если целью моде­лирования является не просто фиксация свойств системы, но и оп­тимизация тех или иных решений по построению или функциони­рованию системы, то помимо ограничения числа параметров системы следует выявить и те параметры, которые иссле­дователь может изменять.

Изменение природы характеристик системы. Допускается с целью упрощения построения и исследования модели рассматривать некоторые переменные параметры в качестве постоянных, дискретные в качестве непрерывных и наоборот.

Изменение функциональной зависимости между параметрами. Нелинейная зависимость обычно заменяется линейной, дискретная функция непрерывной. В последнем случае упрощением может быть и обратное преобразование.

Изменение ограничений. При снятии ограничений процесс получения решения, как правило, упрощается. И, наоборот, при введении ограничений получить решение оказывается значительно сложнее. Варьируя ограничениями, возможно определить область решений, очерченную граничными значениями показателей эффективности функционирования системы.

Процесс моделирования сопровождается определенными затратами различных ресурсов (материальных, вычислительных и т. п.). Эти затраты тем больше, чем сложнее система и чем выше требования к результатам моделирования. Экономичной моделью будем считать такую модель, эффект от использования результатов моделирования которой имеет определенную норму превышения по отношению к расходам ресурсов, использованных на ее создание и использование.

При разработке математической модели необходимо стремится к соблюдению так называемого принципа соразмерности. Это означает, что систематическая ошибка моделирования (т. е. отклонение модели от описания моделируемой системы) должна быть соразмерной с погрешностью описания, в том числе и с погрешностью исходных данных. Кроме того, точность описания отдельных элементов модели должна быть одинаковой независимо от их физической природы и применяемого математического аппарата. И, наконец, должны быть соразмерны между собой систематическая ошибка моделирования и погрешность интерпретаций, а также погрешность усреднения результатов моделирования.

Суммарная ошибка моделирования может быть уменьшена, если использовать различные способы взаимной компенсации ошибок, обусловленных разными причинами. Другими словами, необходимо соблюдать принцип баланса ошибок. Суть этого принципа заключается в компенсации ошибок одного типа ошибками другого типа. Например, ошибки, вызванные неадекватностью модели, уравновешиваются ошибками исходных данных. Строго формальной процедуры соблюдения этого принципа не разработано, но опытным исследователям удается успешно использовать этот принцип в своей работе.

Модульность построения значительно “удешевляет” процесс создания моделей, так как позволяет применять накопленный опыт реализации типовых элементов, модулей при разработке сложных моделей систем. Кроме того, такая модель легко поддается модификации (развитию).

Открытость модели предполагает возможность включения в ее состав новых программных модулей, необходимость которых может выявиться в ходе исследования и в процессе совершенствования модели.

Качество модели во многом будет зависеть от того, насколько успешно решаются организационные аспекты моделирования, а именно привлечение специалистов различных областей. Особенно это важно для начальных этапов, где формулируется цель исследования (моделирования) и разрабатывается концептуальная модель системы. Обязательным является участие в работе представителей заказчика. Заказчик должен четко понимать цели моделирования, разработанную концептуальную модель, программу исследований, уметь анализировать и интерпретировать результаты моделирования.

Конечные цели моделирования могут быть достигнуты только путем проведения исследований с использованием разработанной модели. Исследования заключаются в проведении экспериментов с помощью модели, успешная реализация которых во многом обусловлена тем сервисом, который предоставляется в распоряжение исследователя, иными словами, удобством пользования моделью, под которым понимается удобство пользовательского интерфейса, ввода-вывода результатов моделирования, полнота средств отладки, простота интерпретации результатов и т. д.

Процесс моделирования можно условно разбить на ряд этапов.

Первый этап включает в себя: уяснение целей исследования, места и роли модели в процессе системных исследований, формулирование и конкретизацию цели моделирования, постановку задачи на моделирование.

Второй этап - это этап создания (разработки) модели. Начинается содержательным описанием моделируемого объекта и заканчивается программной реализацией модели.

На третьем этапе проводится исследование с помощью модели, заключающееся в планировании и проведении экспериментов.

Завершается процесс моделирования (четвертый этап) анализом и обработкой результатов моделирования, выработкой предложений и рекомендаций по использованию результатов моделирования на практике.

Непосредственное построение модели начинается с содержательного описания моделируемого объекта. Объект моделирования описывается с позиций системного подхода. Исходя из цели исследования определяется совокупность элементов, их возможные состояния, указываются связи между ними, даются сведения о физической природе и количественных характеристиках исследуемого объекта (системы). Содержательное описание может быть составлено в результате достаточно обстоятельного изучения исследуемого объекта. Описание ведется, как правило, на уровне качественных категорий. Такое предварительное, приближенное представление объекта называют обычно вербальной моделью. Содержательное описание объекта, как правило, самостоятельного значения не имеет, а служит лишь основой для дальнейшей формализации объекта исследования - построения концептуальной модели.

Концептуальная модель объекта является промежуточным звеном между содержательным описанием и математической моделью. Она разрабатывается не во всех случаях, а лишь тогда, когда из-за сложности исследуемого объекта или трудностей формализации некоторых его элементов непосредственный переход от содержательного описания к математической модели оказывается невозможным или нецелесообразным. Процесс создания концептуальной модели носит творческий характер. Именно в связи с этим иногда говорят, что моделирование является не столько наукой, сколько искусством.

Следующим этапом моделирования является разработка математической модели объекта. Создание математической модели преследует две основные цели: дать формализованное описание структуры и процесса функционирования исследуемого объекта и попытаться представить процесс функционирования в виде, допускающем аналитическое или алгоритмическое исследование объекта.

Для преобразования концептуальной модели в математическую необходимо записать, например, а аналитической форме все соотношения между существенными параметрами, их связь с целевой функцией и задать ограничения на значения управляемых параметров.

Такую математическую модель можно представить в виде:

где U - целевая функция (функция эффективности, критериальная функция);

Вектор управляемых параметров;

Вектор неуправляемых параметров;

{x,y} - ограничения на значения управляемых параметров.

Математический аппарат, используемый для формализации, конкретный вид целевой функции и ограничений определяются существом решаемой задачи.

Разработанная математическая модель может быть исследована различными методами - аналитическими, численными, “качественными”, имитационными.

С помощью аналитических методов можно произвести наиболее полное исследование модели. Однако применить эти методы можно только для модели, которую удается представить в виде явных аналитических зависимостей, что удается лишь для сравнительно простых систем. Поэтому аналитические методы исследования используются обычно для первоначальной грубой оценки характеристик объекта (экспресс-оценки), а также на ранних стадиях проектирования систем.

Основная часть исследуемых реальных объектов не поддается исследованию аналитическими методами. Для исследования таких объектов могут быть использованы численные и имитационные методы. Они применимы к более широкому классу систем, для которых математическая модель представляется либо в виде системы уравнений, допускающей решение численными методами, либо в виде алгоритма, имитирующего процесс ее функционирования.

Если полученные уравнения не удается решить аналитическими, численными или имитационными методами, то прибегают к использованию “качественных” методов. “Качественные” методы позволяют оценивать значения искомых величин, а также судить о поведении траектории системы в целом. К подобным методам, наряду с методами математической логики и методами теории расплывчатых множеств, относят и ряд методов теории искусственного интеллекта.

Математическая модель реальной системы является абстрактным, формально описанным объектом, исследование которого ведется также математическими методами, и главным образом, с помощью средств вычислительной техники. Следовательно, при математическом моделировании должен быть определен метод расчета или иначе - разработана алгоритмическая или программная модель, реализующая метод расчета.

Одну и ту же математическую модель можно реализовать на ЭВМ с помощью разных алгоритмов. Все они могут различаться точностью решения, временем расчета, объемом занимаемой памяти и другими показателями.

Естественно, что при исследовании нужен алгоритм, обеспечивающий моделирование с требуемой точностью результатов и минимальными затратами машинного времени и других ресурсов.

Математическая модель, являясь объектом машинного эксперимента, представляется в виде программы для ЭВМ (программной модели). При этом необходимо выбрать язык и средства программирования модели, произвести расчет ресурсов на составление и отладку программы. В последнее время процесс программирования моделей все больше автоматизируется (такой подход будет рассмотрен в разделе “Автоматизация моделирования сложных военных организационно-технических систем”). Созданы специальные алгоритмические языки моделирования, предназначенные для программирования широкого класса моделей (применение языка GPSS (дословный русский перевод – язык моделирования дискретных систем) для моделирования вычислительных систем будет также рассмотрено в последующих главах). Они обеспечивают простоту реализации таких общих задач, возникающих при моделировании, как организация псевдопараллельного выполнения алгоритмов, динамическое распределение памяти, ведение модельного времени, имитация случайных событий (процессов), ведение массива событий, сбор и обработка результатов моделирования и т. п. Описательные средства языков моделирования позволяют идентифицировать и задавать параметры моделируемой системы и внешних воздействий, алгоритмы функционирования и управления, режимы и требуемые результаты моделирования. Языки моделирования при этом выступают как формализованный базис создания математических моделей.

Прежде чем приступить к проведению эксперимента на модели, необходимо подготовить исходные данные. Подготовка исходных данных начинается еще на этапе разработки концептуальной модели, где выявляются некоторые качественные и количественные характеристики объекта и внешних воздействий. Для количественных характеристик необходимо определить их конкретные значения, которые будут использоваться в виде исходных данных при моделировании. Это трудоемкий и ответственный этап работы. Очевидно, что достоверность результатов моделирования однозначно зависит от точности и полноты исходных данных.

Как правило, сбор исходных данных является весьма сложным и трудоемким процессом. Это вызвано рядом причин. Во-первых, значения параметров могут быть не только детерминированными, но и стохастическими. Во-вторых, не все параметры оказываются стационарными. Особенно это относится к параметрам внешних воздействий. В-третьих, зачастую речь идет о моделировании несуществующей системы или системы, которая должна функционировать в новых условиях. Не учет любого из этих факторов приводит к существенным нарушениям адекватности модели.

Конечные цели моделирования достигаются путем использования разработанной модели, заключающиеся в проведении экспериментов с моделью, в результате которых определяются все необходимые характеристики системы.

Эксперименты с моделью, как правило, проводятся по определенному плану. Это вызвано тем, что при ограниченных вычислительных и временных ресурсах обычно не представляется возможным провести все возможные эксперименты. Поэтому возникает необходимость в выборе определенных сочетаний параметров и последовательности проведения эксперимента, т. е. ставится задача построения оптимального плана достижения цели моделирования. Процесс разработки такого плана называется стратегическим планированием. Но при этом не все задачи, связанные с планированием экспериментов, решаются полностью. Появляется необходимость в уменьшении длительности машинных экспериментов при обеспечении статистической достоверности результатов моделирования. Этот процесс получил название тактического планирования.

План эксперимента может быть заложен в машинную программу исследований и выполняться автоматически. Однако чаще всего стратегия исследования предусматривает активное вмешательство исследователя в эксперимент с целью коррекции плана эксперимента. Такое вмешательство обычно реализуется в диалоговом режиме.

В ходе экспериментов обычно измеряется множество значений каждой характеристики, которые потом обрабатываются и анализируются. При большом количестве реализаций, воспроизводимых в процессе моделирования, объем информации о состояниях системы может быть настолько значительным, что ее хранение в памяти ЭВМ, обработка и последующий анализ оказываются практически невозможными. Поэтому необходимо таким образом организовать фиксацию и обработку результатов моделирования, чтобы оценки искомых величин формировались постепенно в ходе моделирования.

Поскольку выходные характеристики зачастую являются случайными величинами или функциями, то суть обработки заключается в вычислении оценок математических ожиданий, дисперсий и корреляционных моментов.

Для того, чтобы исключить необходимость хранения в машине всех измерений, обработку обычно проводят по рекуррентным формулам, когда оценки вычисляют в процессе эксперимента методом нарастающего итога по мере проведения новых измерений.

По обработанным результатам экспериментов производится анализ зависимостей, характеризующих поведение системы с учетом среды. Для хорошо формализуемых систем это можно сделать с помощью корреляционных, дисперсионных или регрессионных методов. К анализу результатов моделирования можно отнести и задачу чувствительности модели к вариациям ее параметров.

Анализ результатов моделирования позволяет уточнить множество информативных параметров модели, а следовательно, и уточнить саму модель. Это может привести к существенному изменению первоначального вида концептуальной модели, выявлению явной зависимости характеристик, появлению возможности создания аналитической модели системы, переопределению весовых коэффициентов векторного критерия эффективности и к другим модификациям начального варианта модели.

Завершающим этапом моделирования является использование результатов моделирования, их перенос на реальный объект - оригинал. В конечном счете результаты моделирования обычно используются для принятия решения о работоспособности системы, прогнозирования поведения системы, для оптимизации системы и т. п.

Решение о работоспособности принимается по тому, выходят или не выходят характеристики системы за установленные границы при любых допустимых изменениях параметров. Прогноз обычно является главной целью любого моделирования. Он заключается в оценке поведения системы в будущем при определенном сочетании ее управляемых и неуправляемых параметров.

Оптимизация представляет собой определение такой стратегии поведения системы (естественно, с учетом среды), при которой достижение цели системы обеспечивалось бы при оптимальном (в смысле принятого критерия) расходе ресурсов. Обычно в качестве методов оптимизации выступают различные методы теории исследования операций.

В процессе моделирования, на всех его этапах исследователь вынужден постоянно решать вопрос - правильно ли создаваемая модель будет отображать оригинал. До тех пор пока этот вопрос не будет решен положительно, ценность модели незначительна.

Требование адекватности, как уже отмечалось выше, находится в противоречии с требованием простоты, и это нужно постоянно помнить при проверке модели на адекватность. В процессе создания модели адекватность объективно нарушается из-за идеализации внешних условий и режимов функционирования, исключения тех или иных параметров, пренебрежения некоторыми случайными факторами. Отсутствие точных сведений о внешних воздействиях, определенных особенностях структуры и процесса функционирования системы, принятые способы аппроксимации и интерполяции, эвристические предположения и гипотезы также ведут к уменьшению соответствия между моделью и оригиналом. Вследствие отсутствия достаточно проработанной методики оценки адекватности, на практике такую проверку производят либо сравнивая результаты доступных экспериментов на объекте с аналогичными результатами, полученными в ходе машинных экспериментов, либо путем сравнения результатов, полученных на аналогичных моделях. Могут применяться и другие косвенные способы проверки на адекватность.

По результатам проверки на адекватность делаются выводы о пригодности модели к проведению экспериментов. Если модель соответствует требованиям, то на ней проводят плановые эксперименты. В противном случае модель уточняется (корректируется) или полностью перерабатывается. При этом оценку адекватности модели необходимо проводить на каждом этапе моделирования, начиная с этапа формирования цели моделирования и постановки задачи на моделирование и заканчивая этапом выработки предложений по использованию результатов моделирования.

При корректировке или переработке модели могут быть выделены следующие типы изменений: глобальные, локальные и параметрические.

Глобальные изменения могут быть вызваны серьезными ошибками на начальных этапах моделирования: при постановке задачи на моделирование, при разработке вербальной, концептуальной и математической моделей. Устранение таких ошибок обычно ведет к разработке новой модели.

Локальные изменения связаны с уточнением некоторых параметров или алгоритмов. Локальные изменения требуют частичного изменения математической модели, но могут привести к необходимости разработки новой программной модели. Для уменьшения вероятности таких изменений рекомендуется сразу разрабатывать модель с большей степенью детализации, чем необходимо для достижения цели моделирования.

К параметрическим относятся изменения некоторых специальных параметров, называемых калибровочными. Для повышения адекватности модели путем параметрических изменений следует заранее выявить калибровочные параметры и предусмотреть простые способы варьирования ими.

Стратегия корректировки модели должна быть направлена на первоочередное введение глобальных, затем локальных и, наконец, параметрических изменений.

На практике этапы моделирования иногда проводятся изолированно друг от друга, что отрицательным образом сказывается на результатах в целом. Разрешение данной проблемы лежит на путях рассмотрения в единых рамках процессов построения модели, организации экспериментов на ней и создания программного обеспечения моделирования.

Моделирование необходимо рассматривать как единый процесс построения и исследования модели , имеющий соответствующую программно-аппаратную поддержку. При этом следует отметить два важных аспекта.

Методологический аспект - выявление закономерностей, приемов построения алгоритмических описаний систем, целенаправленного преобразования полученных описаний в пакеты взаимосвязанных машинных моделей, составлением применительно к таким пакетам сценариев и планов работы, направленных на достижение прикладных целей моделирования.

Творческий аспект - искусство, мастерство, умение достигать в ходе машинного моделирования сложных систем практически полезных результатов.

Реализация концепции системного моделирования как целостной совокупности методов построения и использования моделей возможна лишь при соответствующем уровне развития информационных технологий.

Классификация моделей и моделирования

Каждая модель создается для конкретной цели и, следовательно, уникальна. Однако наличие общих черт позволяет сгруппировать все их многообразие в отдельные классы, что облегчает их разработку и изучение. В теории рассматривается много признаков классификации и их количество не установилось. Тем не менее, наиболее актуальны следующие признаки классификации :

  • характер моделируемой стороны объекта;
  • характер процессов, протекающих в объекте;
  • способ реализации модели.

1.2.1. Классификация моделей и моделирования по признаку "характер моделируемой стороны объекта"

В соответствии с этим признаком модели могут быть:

· функциональными (кибернетическими);

· структурными;

· информационными.

Функциональные модели отображают только поведение, функцию моделируемого объекта. В этом случае моделируемый объект рассматривается как "черный ящик", имеющий входы и выходы. Физическая сущность объекта, природа протекающих в нем процессов, структура объекта остаются вне внимания исследователя, хотя бы потому, что неизвестны. При функциональном моделировании эксперимент состоит в наблюдении за выходом моделируемого объекта при искусственном или естественном изменении входных воздействий. По этим данным и строится модель поведения в виде некоторой математической функции.

Компьютерная шахматная программа - функциональная модель работы человеческого мозга при игре в шахматы.

Структурное моделирование это создание и исследование модели, структура которой (элементы и связи) подобна структуре моделируемого объекта. Как мы выяснили ранее, подобие устанавливается не вообще, а относительно цели исследования. Поэтому она может быть описана на разных уровнях рассмотрения. Наиболее общее описание структуры - это топологическое описание с помощью теории графов.

Учение войск - структурная модель вида боевых действий.

1.2.2. Классификация моделей и моделирования по признаку "характер процессов, протекающих в объекте"

По этому признаку модели могут быть детерминированными или стохастическими, статическими или динамическими, дискретными или непрерывными или дискретно-непрерывными.

Детерминированные модели отображают процессы, в которых отсутствуют случайные воздействия.

Стохастические модели отображают вероятностные процессы и события.

Статические модели служат для описания состояния объекта в какой-либо момент времени.

Динамические модели отображают поведение объекта во времени.

Дискретные модели отображают поведение систем с дискретными состояниями.

Непрерывные модели представляют системы с непрерывными процессами.



Дискретно-непрерывные модели строятся тогда, когда исследователя интересуют оба эти типа процессов.

Очевидно, конкретная модель может быть стохастической, статической, дискретной или какой-либо другой, в соответствии со связями, показанными на рис. 1.1.

1.2.3. Классификация моделей и моделирования по признаку "способ реализации модели"

Согласно этому признаку модели делятся на два обширных класса:

  • абстрактные (мысленные) модели;
  • материальные модели.

Рис. 1.1. Классификация моделей и моделирования

Нередко в практике моделирования присутствуют смешанные, абстрактноматериальные модели.

Абстрактные модели представляют собой определенные конструкции из общепринятых знаков на бумаге или другом материальном носителе или в виде компьютерной программы.

Абстрактные модели, не вдаваясь в излишнюю детализацию, можно разделить на:

· символические;

· математические.

Символическая модель - это логический объект, замещающий реальный процесс и выражающий основные свойства его отношений с помощью определенной системы знаков или символов. Это либо слова естественного языка, либо слова соответствующего тезауруса , графики, диаграммы и т. п.

Символическая модель может иметь самостоятельное значение, но, как правило, ее построение является начальным этапом любого другого моделирования.

Математическое моделирование - это процесс установления соответствия моделируемому объекту некоторой математической конструкции, называемой математической моделью, и исследование этой модели, позволяющее получить характеристики моделируемого объекта.

Математическое моделирование - главная цель и основное содержание изучаемой дисциплины.

Математические модели могут быть:

· аналитическими;

· имитационными;

· смешанными (аналитико-имитационными).

Аналитические модели - это функциональные соотношения: системы алгебраических, дифференциальных, интегро - дифференциальных уравнений, логических условий. Уравнения Максвелла - аналитическая модель электромагнитного поля. Закон Ома - модель электрической цепи.

Преобразование математических моделей по известным законам и правилам можно рассматривать как эксперименты. Решение на основе аналитических моделей может быть получено в результате однократного просчета безотносительно к конкретным значениям характеристик ("в общем виде"). Это наглядно и удобно для выявления закономерностей. Однако для сложных систем построить аналитическую модель, достаточно полно отражающую реальный процесс, удается не всегда. Тем не менее, есть процессы, например, марковские, актуальность моделирования которых аналитическими моделями доказана практикой.

Имитационное моделирование .Создание вычислительных машин обусловило развитие нового подкласса математических моделей - имитационных.

Имитационное моделирование предполагает представление модели в виде некоторого алгоритма - компьютерной программы, - выполнение которого имитирует последовательность смены состояний в системе и таким образом представляет собой поведение моделируемой системы.

Процесс создания и испытания таких моделей называется имитационным моделированием, а сам алгоритм - имитационной моделью.

В чем заключается отличие имитационных и аналитических моделей?

В случае аналитического моделирования ЭВМ является мощным калькулятором, арифмометром. Аналитическая модель решается на ЭВМ.

В случае же имитационного моделирования имитационная модель - программа - реализуется на ЭВМ.

Имитационные модели достаточно просто учитывают влияние случайных факторов. Для аналитических моделей это серьезная проблема. При наличии случайных факторов необходимые характеристики моделируемых процессов получаются многократными прогонами (реализациями) имитационной модели и дальнейшей статистической обработкой накопленной информации. Поэтому часто имитационное моделирование процессов со случайными факторами называют статистическим моделированием .

Если исследование объекта затруднено использованием только аналитического или имитационного моделирования, то применяют смешанное (комбинированное), аналитико-имитационное моделирование. При построении таких моделей процессы функционирования объекта декомпозируются на составляющие подпроцессы и для которых возможно используют аналитические модели, а для остальных подпроцессов строят имитационные модели.

Материальное моделирование основано на применении моделей, представляющих собой реальные технические конструкции. Это может быть сам объект или его элементы (натурное моделирование). Это может быть специальное устройство - модель, имеющая либо физическое, либо геометрическое подобие оригиналу. Это может быть устройство иной физической природы, чем оригинал, но процессы в котором описываются аналогичными математическими соотношениями. Это так называемое аналоговое моделирование. Такая аналогия наблюдается, например, между колебаниями антенны спутниковой связи под ветровой нагрузкой и колебанием электрического тока в специально подобранной электрической цепи.

Нередко создаются материально-абстрактные модели . Та часть операции, которая не поддается математическому описанию, моделируется материально, остальная - абстрактно. Таковы, например, командно-штабные учения, когда работа штабов представляет собой натурный эксперимент, а действия войск отображаются в документах.

Классификация по рассмотренному признаку - способу реализации модели - показана на рис. 1.2.

Рис. 1.2. Классификация по способу реализации модели

Математическое моделирование как, впрочем, и любое другое, считается искусством и наукой. Известный специалист в области имитационного моделирования Роберт Шеннон так назвал свою широко известную в научном и инженерном мире книгу: "Имитационное моделирование - искусство и наука". Поэтому в инженерной практике нет формализованной инструкции, как создавать модели. И, тем не менее, анализ приемов, которые используют разработчики моделей, позволяет усмотреть достаточно прозрачную этапность моделирования.

Первый этап : уяснение целей моделирования. Вообще-то это главный этап любой деятельности. Цель существенным образом определяет содержание остальных этапов моделирования. Заметим, что различие между простой системой и сложной порождается не столько их сущностью, но и целями, которые ставит исследователь.

Обычно целями моделирования являются:

· прогноз поведения объекта при новых режимах, сочетаниях факторов и т. п.;

· подбор сочетания и значений факторов, обеспечивающих оптимальное значение показателей эффективности процесса;

· анализ чувствительности системы на изменение тех или иных факторов;

· проверка различного рода гипотез о характеристиках случайных параметров исследуемого процесса;

· определение функциональных связей между поведением ("реакцией") системы и влияющими факторами, что может способствовать прогнозу поведения или анализу чувствительности;

· уяснение сущности, лучшее понимание объекта исследования, а также формирование первых навыков для эксплуатации моделируемой или действующей системы.

Второй этап : построение концептуальной модели. Концептуальная модель (от лат. conception) - модель на уровне определяющего замысла, который формируется при изучении моделируемого объекта. На этом этапе исследуется объект, устанавливаются необходимые упрощения и аппроксимации. Выявляются существенные аспекты, исключаются второстепенные. Устанавливаются единицы измерения и диапазоны изменения переменных модели. Если возможно, то концептуальная модель представляется в виде известных и хорошо разработанных систем: массового обслуживания, управления, авторегулирования, разного рода автоматов и т. д. Концептуальная модель полностью подводит итог изучению проектной документации или экспериментальному обследованию моделируемого объекта.

Результатом второго этапа является обобщенная схема модели, полностью подготовленная для математического описания - построения математической модели.

Третий этап : выбор языка программирования или моделирования, разработка алгоритма и программы модели. Модель может быть аналитической или имитационной, или их сочетанием. В случае аналитической модели исследователь должен владеть методами решения.

В истории математики (а это, впрочем, и есть история математического моделирования) есть много примеров тому, когда необходимость моделирования разного рода процессов приводила к новым открытиям. Например, необходимость моделирования движения привела к открытию и разработке дифференциального исчисления (Лейбниц и Ньютон) и соответствующих методов решения. Проблемы аналитического моделирования остойчивости кораблей привели академика Крылова А. Н. к созданию теории приближенных вычислений и аналоговой вычислительной машины.

Результатом третьего этапа моделирования является программа, составленная на наиболее удобном для моделирования и исследования языке - универсальном или специальном.

Четвертый этап : планирование эксперимента. Математическая модель является объектом эксперимента. Эксперимент должен быть в максимально возможной степени информативным, удовлетворять ограничениям, обеспечивать получение данных с необходимой точностью и достоверностью. Существует теория планирования эксперимента, нужные нам элементы этой теории мы изучим в соответствующем месте дисциплины.

Результат четвертого этапа - план эксперимента.

Пятый этап : выполнение эксперимента с моделью. Если модель аналитическая, то эксперимент сводится к выполнению расчетов при варьируемых исходных данных. При имитационном моделировании модель реализуется на ЭВМ с фиксацией и последующей обработкой получаемых данных. Эксперименты проводятся в соответствии с планом, который может быть включен в алгоритм модели. В современных системах моделирования такая возможность есть.

Шестой этап : обработка, анализ и интерпретация данных эксперимента. В соответствии с целью моделирования применяются разнообразные методы обработки: определение разного рода характеристик случайных величин и процессов, выполнение анализов - дисперсионного, регрессионного, факторного и др. Многие из этих методов входят в системы моделирования (GPSS World, AnyLogic и др.) и могут применяться автоматически. Не исключено, что в ходе анализа полученных результатов модель может быть уточнена, дополнена или даже полностью пересмотрена.

После анализа результатов моделирования осуществляется их интерпретация, то есть перевод результатов в термины предметной области. Это необходимо, так как обычно специалист предметной области (тот, кому нужны результаты исследований) не обладает терминологией математики и моделирования и может выполнять свои задачи, оперируя лишь хорошо знакомыми ему понятиями.

На этом рассмотрение последовательности моделирования закончим, сделав весьма важный вывод о необходимости документирования результатов каждого этапа. Это необходимо в силу следующих причин.

Во-первых, моделирование процесс итеративный, то есть с каждого этапа может осуществляться возврат на любой из предыдущих этапов для уточнения информации, необходимой на этом этапе, а документация может сохранить результаты, полученные на предыдущей итерации.

Во-вторых, в случае исследования сложной системы в нем участвуют большие коллективы разработчиков, причем различные этапы выполняются различными коллективами. Поэтому результаты, полученные на каждом этапе, должны быть переносимы на последующие этапы, то есть иметь унифицированную форму представления и понятное другим заинтересованным специалистам содержание.

В-третьих, результат каждого из этапов должен являться самоценным продуктом. Например, концептуальная модель может и не использоваться для дальнейшего преобразования в математическую модель, а являться описанием, хранящим информацию о системе, которое может использоваться как архив, в качестве средства обучения и т. д.

Каждый этап моделирования определяет поставленная задача и цели моделирования. В общем случае процесс построения и исследования модели может быть представлен с помощью схемы:

I этап. Постановка задачи

Включает в себя три стадии:

    Описание задачи

    Задача описывается на обычном языке.

    Все множество задач можно разделить по характеру постановки на 2 основные группы:

    1. Первая группа содержит задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, т.е. требуется получить ответ на вопрос «Что будет, если?...».

      Например, что будет, если магнитную карточку положить на холодильник? Что будет, если повысить требования для поступления в вуз? Что будет, если резко повысить плату за коммунальные услуги? и т. п.

      Вторая группа содержит задачи, в которых требуется определить, что нужно сделать с объектом, чтобы его параметры удовлетворили определенное заданное условие, т.е. требуется получить ответ на вопрос «Как сделать, чтобы?..».

      Например, как построить урок математики, чтобы детям был понятен материал? Какой режим полета самолета выбрать, чтобы полет был безопаснее и экономически выгоднее? Как составить график выполнения работ на строительстве, чтобы оно было закончено максимально быстро?

    Определение цели моделирования

    На этой стадии среди многих характеристик (параметров) объекта выделяются наиболее существенные. Один и тот же объект при разных целях моделирования будет иметь разные существенные свойства.

    Например, при построении модели яхты для участия в соревнованиях моделей судов, существенными будут ее судоходные характеристики. Для достижения поставленной цели построения модели будет отыскиваться ответ на вопрос «Как сделать, чтобы…?»

    При построении модели яхты для совершения на ней путешествий, долгосрочных круизов, кроме судоходных характеристик существенным будет ее внутреннее строение : количество палуб, комфортабельность кают, наличие других удобств и т.д.

    При построении компьютерной имитационной модели яхты для проверки надежности ее конструкции в штормовых условиях, моделью яхты будет представлять собой изменение изображения и расчетных параметров на экране монитора при изменении значений входных параметров. Будет решаться задача «Что будет, если…?»

    Цель моделирования позволяет установить, какие данные будут исходными, чего нужно достичь в результате и какие свойства объекта можно не учитывать.

    Таким образом происходит построение словесной модели задачи.

    Анализ объекта

    Подразумевается четкое выделение объекта, который моделируется, и его основных свойств.

II этап. Формализация задачи

Связан с созданием формализованной модели, т.е. модели, которая записана на каком-либо формальном языке. Например, показатели рождаемости, которые представлены в виде таблицы или диаграммы, являются формализованной моделью.

Под формализацией понимают приведение существенных свойств и признаков объекта моделирования к определенной форме.

Формальной моделью является модель, которая получена в результате формализации.

Замечание 1

Для решения задач с помощью компьютера наиболее подходящим является математический язык. Формальная модель фиксирует связи между исходными данными и конечным результатом с помощью разных формул, а также наложения ограничений на допустимые значения параметров.

III этап. Разработка компьютерной модели

Начинается с выбора инструмента моделирования (программной среды), с помощью которого будет создаваться и исследоваться модель.

От выбора программной среды зависит алгоритм построения компьютерной модели и форма его представления.

Например, в среде программирования формой представления является программа, которая написана на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т.д.) формой представления алгоритма является последовательность технологических приемов, которые приводят к решению задачи.

Заметим, что одну и ту же задачу можно решить с помощью разных программных сред, выбор которой зависит, в первую очередь, от ее технических и материальных возможностей.

IV этап. Компьютерный эксперимент

Включает 2 стадии:

    Тестирование модели – проверка правильности построения модели.

    На этой стадии выполняется проверка разработанного алгоритма построения модели и адекватности полученной модели объекту и цели моделирования.

    Замечание 2

    Для проверки правильности алгоритма построения модели используются тестовые данные, для которых заранее известен конечный результат. Чаще всего тестовые данные определяются ручным способом. Если в ходе проверки результаты совпадают, значит разработан правильный алгоритм, а если нет – то нужно найти и устранить причину их несоответствия.

    Тестирование должно отличаться целенаправленностью и систематизацией, усложнение же тестовых данных должно выполняться постепенно. Для определения правильности построения модели, которая отражает существенные для цели моделирования свойства оригинала, т.е. ее адекватности, необходим подбор таких тестовых данных, которые будут отражать реальную ситуацию.

    Исследование модели

    К исследованию модели можно переходить только после успешного прохождения тестирования и уверенности в том, что создана именно та модель, которую необходимо исследовать.

V этап. Анализ результатов

Является основным для процесса моделирования. Решение о продолжении или завершении исследования принимается по итогам именно этого этапа.

В случае, когда результаты не соответствуют целям поставленной задачи, делают вывод о том, что на предыдущих этапах были допущены ошибки. Тогда необходимо выполнить коррекцию модели, т.е. вернуться к одному из предыдущих этапов. Процесс должен повторяться до тех пор, пока результаты компьютерного эксперимента не будут соответствовать целям моделирования.

Компьютерные и некомпьютерные модели

В информатике рассматриваются модели, которые можно создавать и исследовать с помощью компьютера. В этом случае модели делят на компьютерные и некомпьютерные .

Компьютерная модель - это модель, реализованная средствами программной среды.

В настоящее время выделяют два вида компьютерных моделей:

- структурно-функциональные , которые представляют собой условный образ объекта, описанный с помощью компьютерных технологий;

- имитационные , представляющие собой программу или комплекс программ, позволяющий воспроизводить процессы функционирования объекта в разных условиях.

Значение компьютерного моделирования сложно переоценить. К нему прибегают при исследовании сложных систем в различных областях науки, при создании образов исчезнувших животных, растений, зданий и т. п. Редкий кинорежиссер сегодня обходится без компьютерных эффектов. Кроме того, современное компьютерное моделирование является мощным инструментом развития науки.

Все этапы определяются поставленной задачей и целями моделирования. В общем случае процесс построения и исследования модели можно представить следующей схемой:

Рис. 6. Этапы компьютерного моделирования

Первый этап - постановка задачи включает в себя стадии: описание задачи, определение цели моделирования, анализ объекта. Ошибки при постановке задачи приводят к наиболее тяжелым последствиям!

· Описание задачи

Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, «что будет, если? ...».

Например, что будет, если магнитный диск положить рядом с магнитом?

В задачах, относящихся ко второй группе, требуется определить, какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, «как сделать, чтобы? ..».

· Определение цели моделирования

На этой стадии необходимо среди многих характеристик (параметров) объекта выделить существенные . Мы уже говорили о том, что для одного и того же объекта при разных целях моделирования существенными будут считаться разные свойства.

Например, если вы строите модель яхты для участия в соревнованиях моделей судов, то в первую очередь вас будут интересовать ее судоходные характеристики. Вы будете решать задачу «как сделать, чтобы…?»

А того, кто собирается на яхте в круиз, помимо тех же самых параметров, будет интересовать, внутреннее устройство: количество палуб, комфортабельность и т. п.

Для конструктора яхты, строящего компьютерную имитационную модель для проверки надежности конструкции в штормовых условиях, моделью яхты будет изменение изображения и расчетных параметров на экране монитора при изменении значений входных параметров. Он будет решать задачу «что будет, если…?»

Определение цели моделирования позволяет четко установить, какие данные являются исходными, что требуется получить на выходе и какими свойствами объекта можно пренебречь.
Таким образом, строится словесная модель задачи.

· Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств.

Второй этап - формализация задачи связан с созданием формализованной модели , то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы - это формализованная модель.

В общем смысле формализация - это приведение существенных свойств и признаков объекта моделирования к выбранной форме.

Формальная модель - это модель, полученная в результате формализации.

Для решения задачи на компьютере больше всего подходит язык математики. В такой модели связь между исходными данными и конечными результатами фиксируется с помощью различных формул, а также накладываются ограничения на допустимые значения параметров.

Третий этап - разработка компьютерной модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться, и исследоваться модель.

От этого выбора зависит алгоритм построения компьютерной модели, а также форма его представления. В среде программирования - это программа , написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) - это последовательность технологических приемов , приводящих к решению задачи.

Следует отметить, что одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.

Четвертый этап - компьютерный эксперимент включает две стадии: тестирование модели и проведение исследования .

· Тестирование модели - процесс проверки правильности построения модели.

На этой стадии проверяется разработанный алгоритм построения модели и адекватность полученной модели объекту и цели моделирования.

Для проверки правильности алгоритма построения модели используется тестовые данные, для которых конечный результат заранее известен (обычно его определяют ручным способом). Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину их несоответствия.

Тестирование должно быть целенаправленным и систематизированным, а усложнение тестовых данных должно происходить постепенно. Чтобы убедиться, что построенная модель правильно отражает существенные для цели моделирования свойства оригинала, то есть является адекватной, необходимо подбирать тестовые данные, которые отражают реальную ситуацию .