История открытия закона всемирного тяготения - описание, особенности и интересные факты. Открытие и применение закона всемирного тяготения Открытие планет с использованием закона всемирного тяготения


Закон всемирного тяготения лежит в основе небесной механики - науки о движении планет. С помощью этого закона с огромной точностью определяются положения небесных тел на небесном своде на многие десятки лет вперед и вычисляются их траектории. Закон всемирного тяготения применяется также в расчетах движения искусственных спутников Земли и межпланетных автоматических аппаратов.
Возмущения в движении планет
Планеты не движутся строго по законам Кеплера. Законы Кеплера точно соблюдались бы для движения данной планеты лишь в том случае, когда вокруг Солнца обращалась бы одна эта планета. Но в Солнечной системе планет много, все они притягиваются как Солнцем, так и друг другом. Поэтому возникают возмущения движения планет. В Солнечной системе возмущения невелики, потому что притяжение планеты Солнцем гораздо сильнее притяжения другими планетами.
При вычислении видимого положения планет приходится учитывать возмущения. При запуске искусственных небесных тел и при расчете их траекторий пользуются приближенной теорией движения небесных тел - теорией возмущений.
Открытие Нептуна
Одним из ярких примеров триумфа закона всемирного тяготения является открытие планеты Нептун. В 1781 г. английский астроном Вильям Гершель открыл планету Уран. Была вычислена ее орбита и составлена таблица положений этой планеты на много лет вперед. Однако проверка этой таблицы, проведенная в 1840 г., показала, что данные ее расходятся с действительностью.
Ученые предположили, что отклонение в движении Урана вызвано притяжением неизвестной планеты, находящейся от Солнца еще дальше, чем Уран. Зная отклонения от расчетной траектории (возмущения движения Урана), англичанин Адаме и француз Леверрье, пользуясь законом всемирного тяготения, вычислили положение этой планеты на небе.
Адаме раньше закончил вычисления, но наблюдатели, которым он сообщил свои результаты, не торопились с проверкой. Тем временем Леверрье, закончив вычисления, указал немецкому астроному Галле место, где надо искать неизвестную планету. В первый же вечер, 28 сентября 1846 г., Галле, направив телескоп на указанное место, обнаружил новую планету. Ее назвали Нептуном.
Таким же образом 14 марта 1930 г. была открыта планета Плутон. Оба открытия, как говорят, были сделаны «на кончике пера».
В § 3.2 мы говорили, что закон всемирного тяготения Ньютон открыл, используя законы движения планет - законы Кеплера. Правильность открытого Ньютоном закона всемирного тяготения подтверждается и тем, что с помощью этого закона и второго закона Ньютона можно вывести законы Кеплера. Мы не будем приводить этот вывод.
При помощи закона всемирного тяготения можно вычислить массу планет и их спутников; объяснить такие явления, как приливы и отливы воды в океанах, и многое другое.
Гравитационной «тени» нет
Силы всемирного тяготения - самые универсальные из всех сил природы. Они действуют между любыми телами, обладающими массой, а массу имеют все тела. Для сил тяготения не существует никаких преград. Они действуют сквозь любые тела. Экраны из особых веществ, непроницаемых для гравитации (вроде «кеворита» из романа Г. Уэллса «Первые люди на Луне»), могут существовать только в воображении авторов научно-фантастических книг.
Стремительное развитие механики началось после открытия закона всемирного тяготения. Стало ясно, что одни и те же законы действуют на Земле и в космическом пространстве.

Еще по теме § 3.4. ЗНАЧЕНИЕ ЗАКОНА ВСЕМИРНОГО ТЯГОТЕНИЯ:

  1. § 22. Законы мышления как предполагаемые естественные законы, которые в своем изолированном действии ЯВЛЯЮТСЯ причиной 15 разумного мышления

Урок 1 (записать тему и цель урока в тетрадях)

Закон всемирного тяготения. Ускорение свободного падения на Земле и других планетах

Цель урока:

Изучить закон всемирного тяготения, показать его практическую значи­мость.

Ход урока

I . Новый материал (Сделать конспект в тетрадях)

Датский астроном Тихо Браге, многие годы наблюдая за движением пла­нет, накопил многочисленные данные, но не сумел их обработать. Это сделал его ученик Иоганн Кеплер. Используя идею Коперника о гелиоцентрической системе и результаты наблюдений Тихо Браге, Кеплер установил законы дви­жения планет вокруг Солнца. Но Кеплер не сумел объяснить динамику дви­жения. Почему планеты обращаются вокруг Солнца именно по таким зако­нам? На этот вопрос сумел ответить Исаак Ньютон, использую законы движе­ния, установленные Кеплером, и общие законы динамики.

Ньютон предположил, что ряд явлений, казалось бы, не имеющих ничего общего (падение тел на Землю, обращение планет вокруг Солнца, движение Луны вокруг Земли, приливы и отливы и т. д.), вызваны одной причиной. Про­ведя многочисленные расчеты, Ньютон пришел к выводу, что небесные тела притягиваются друг к другу с силой, прямо пропорциональной произведе­нию их масс и обратно пропорциональной квадрату расстояния между ними. Покажем, как Ньютон пришел к такому заключению.

Из второго закона "динамики следует, что ускорение, которое получает тело под действием силы, обратно пропорционально массе тела. Но ускоре­ние свободного падения не зависит от массы тела. Это возможно только в том случае, если сила, с которой Земля притягивает тело, изменяется пропорцио­нально массе тела.

По третьему закону силы, с которыми взаимодействуют тела, равны. Если сила, действующая на одно тело, пропорциональна массе этого тела, то рав­ная ей сила, действующая на второе тело, очевидно, пропорциональна массе второго тела. Но силы, действующие на оба тела, равны, следовательно, они пропорциональны массе и первого и второго тела.

Ньютон рассчитал отношение радиуса орбиты Луны к радиусу Земли. От­ношение равнялось 60. А отношение ускорения свободного падения на Земле к центростремительному ускорению, с которым обращается вокруг Земли Луна, равнялось 3600. Следовательно, ускорение обратно пропорционально квадрату расстояния между телами.

Но по второму закону Ньютона сила и ускорение связаны прямой зависи­мостью, следовательно, сила обратно пропорциональна квадрату расстояния между телами.

Исаак Ньютон открыл этот закон в возрасте 23 лет, но 9 лет не публиковал, так как неверные данные о расстоянии между Землей и Луной не подтвержда­ли его идею. И только когда было уточнено это расстояние, Ньютон в 1667 г. опубликовал закон всемирного тяготения.

Сила гравитационного взаимодействия двух тел (материальных точек) с массами т 1 и т 2 равна:

где G - гравитационная постоянная, r - расстояние между телами.

Гравитационная постоянная численно равна модулю силы тяготения, дей­ствующей на тело массой 1 кг со стороны другого тела такой же массы при расстоянии между телами равном 1 м.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1788 г. с помощью прибора, называемого крутильными ве­сами. Г. Кавендиш закрепил два маленьких свинцовых шара (диаметром 5 см и массой 775 г каждый) на противоположных концах двухметрового стержня. Стержень был подвешен на тонкой проволоке. Два больших свинцовых шара (20 см диаметром и массой 45,5 кг) близко подводились к маленьким. Силы притяжения со стороны больших шаров заставляли маленькие перемещаться, при этом проволока закручивалась. Степень закручивания была мерой силы, действующей между шарами. Эксперимент показал, что гравитационная по-тоянная G = 6,66 · 1011 Нм2/кг2.

Пределы применимости закона

Закон всемирного тяготения применим только для материальных точек, т. е. для тел, размеры которых значительно меньше, чем расстояния между ними; тел, имеющих форму шара; для шара большого радиуса, взаимодей­ствующего с телами, размеры которых значительно меньше размеров шара.

Но закон неприменим, например, для взаимодействия бесконечного стержня и шара. В этом случае сила тяготения обратно пропорциональна только расстоянию, а не квадрату расстояния. А сила притяжения между те­лом и бесконечной плоскостью вообще от расстояния не зависит.

Сила тяжести

Частным случаем гравитационных сил является сила притяжения тел к Земле. Эту силу называют силой тяжести. В этом случае закон всемирного тяготения имеет вид:

где т - масса тела [кг],

М - масса Земли [кг],

R - радиус Земли [м],

h - высота над поверхностью [м].

Но сила тяжести F T = mg , отсюда , а ускорение свободного падения .

На поверхности Земли (h = 0) .

Ускорение свободного падения зависит

♦ от высоты над поверхностью Земли;

♦ от широты местности (Земля - неинерциальная система отсчета);

♦ от плотности пород земной коры;

♦ от формы Земли (приплюснута у полюсов).

В приведенной выше формуле для g последние три зависимости не учиты­ваются. При этом еще раз подчеркнем, что ускорение свободного падения не 1 зависит от массы тела.

Применение закона при открытии новых планет

Когда была открыта планета Уран, на основе закона всемирного тяготения рассчитали ее орбиту. Но истинная орбита планеты не совпала с расчетной. Предположили, что возмущение орбиты вызвало наличием еще одной плане­ты, находящейся за Ураном, которая своей силой тяготения изменяет его ор­биту. Чтобы найти новую планету, необходимо было решить систему из 12 дифференциальных уравнений с 10 неизвестными. Эту задачу выполнил анг - Яийский студент Адамc; решение он отправил в Английскую академию наук. Но там на его работу не обратили внимания. А французский математик Леверье, решив задачу, послал результат итальянскому астроному Галле. И тот, в первый же вечер наведя свою трубу в указанную точку, обнаружил новую пла­нету. Ей дали название Нептун. Подобным же рбразом в ЗО-е годы двадцатого века была открыта и 9-я планета Солнечной системы - Плутон.

На вопрос о том, какова природа сил тяготения, Ньютон отвечал: «Не знаю, а гипотез измышлять не желаю».

III . Упражнения и вопросы для повторения (устно)

Как формулируется закон всемирного тяготения?

Какой вид имеет формула закона всемирного тяготения для материаль­ных точек?

Что называют гравитационной постоянной? Какой ее физический смысл? Каково значение в СИ?

Что называется гравитационным полем?

Зависит ли сила тяготения от свойств среды, в которой находятся тела?

Зависит ли ускорение свободного падения тела от его массы?

Одинакова ли сила тяжести в различных точках земного шара?

Объясните влияние вращения Земли вокруг оси на ускорение свободно­го падения.

Как изменяется ускорение свободного падения при удалении от поверх­ности Земли?

Почему Луна не падает на Землю? (Луна обращается вокруг Земли, удерживаемая силой притяжения. Луна не падает на Землю, потому что, имея начальную скорость, движется по инерции. Если прекра­тится действие силы притяжения Луны к Земле, Луна по прямой ли­нии умчится в бездну космического пространства. Прекратись дви­жение по инерции - и Луна упала бы на Землю. Падение продолжалось бы четверо суток девятнадцать часов пятьдесят четыре минуты семь секунд. Так рассчитал Ньютон .)

IV . Решение задач (Письменно в тетрадях с оформлением!!!)

Задача 1

На каком расстоянии сила притяжения двух шариков массами по 1 г равна 6,7·10-17 Н?

Задача 2

На какую высоту от поверхности Земли поднялся космический корабль, если приборы отметили уменьшение ускорения свободного падения до 4,9 м/с2?

Задача 3

Сила тяготения между двумя шарами 0,0001 Н. Какова масса одного из шаров, если расстояние между их центрами 1 м, а масса другого шара 100 кг?

Домашнее задание

1. Выучить §11;

2. Выполнить упражнение 5.1-5.10 (устно), 5.11-5.5.20(письменно в тетрадях с оформлением);

3. Ответить на вопрос микротеста:

Космическая ракета удаляется от Земли. Как изменится сила тяготения, действующая со стороны Земли на ракету, при увеличении расстояния до цен­тра Земли в 3 раза?

а) увеличится в 3 раза; б) уменьшится в 3 раза;

в) уменьшится в 9 раз; г) не изменится.

Эта статья уделит внимание истории открытия закона всемирного тяготения. Здесь мы ознакомимся с биографическими сведениями из жизни ученого, открывшего эту физическую догму, рассмотрим ее основные положения, взаимосвязь с квантовой гравитацией, ход развития и многое другое.

Гений

Сэр Исаак Ньютон - ученый родом из Англии. В свое время много внимания и сил уделил таким науками, как физика и математика, а также привнес немало нового в механику и астрономию. По праву считается одним из первых основоположников физики в ее классической модели. Является автором фундаментального труда «Математические начала натуральной философии», где изложил информацию о трех законах механики и законе всемирного тяготения. Исаак Ньютон заложил этими работами основы классической механики. Им было разработано и интегрального типа, световая теория. Он также внес большой вклад в физическую оптику и разработал множество других теорий в области физики и математики.

Закон

Закон всемирного тяготения и история его открытия уходят своим началом в далекий Его классическая форма - это закон, при помощи которого описывается взаимодействие гравитационного типа, не выходящее за пределы рамок механики.

Его суть заключалась в том, что показатель силы F гравитационной тяги, возникающей между 2 телами или точками материи m1 и m2, отделенными друг от друга определенным расстоянием r, соблюдает пропорциональность по отношению к обоим показателям массы и имеет обратную пропорциональность квадрату расстояния между телами:

F = G, где символом G мы обозначаем постоянную гравитации, равную 6,67408(31).10 -11 м 3 /кгс 2 .

Тяготение Ньютона

Прежде чем рассмотреть историю открытия закона всемирного тяготения, ознакомимся более детально с его общей характеристикой.

В теории, созданной Ньютоном, все тела с большой массой должны порождать вокруг себя особое поле, которое притягивает другие объекты к себе. Его называют гравитационным полем, и оно имеет потенциал.

Тело, обладающее сферической симметрией, образует за пределом самого себя поле, аналогичное тому, которое создает материальная точка той же массы, расположенная в центре тела.

Направление траектории такой точки в поле гравитации, созданным телом с гораздо более большой массой, подчиняется Объекты вселенной, такие как, например, планета или комета, также подчиняются ему, двигаясь по эллипсу или гиперболе. Учет искажения, которое создают другие массивные тела, учитывается с помощью положений теории возмущения.

Анализируя точность

После того, как Ньютон открыл закон всемирного тяготения, его необходимо было проверить и доказать множество раз. Для этого совершались ряды расчетов и наблюдений. Придя к согласию с его положениями и исходя из точности его показателя, экспериментальная форма оценивания служит ярким подтверждением ОТО. Измерение квадрупольных взаимодействий тела, что вращается, но антенны его остаются неподвижными, показывают нам, что процесс наращивания δ зависит от потенциала r -(1+δ) , на расстоянии в несколько метров и находится в пределе (2,1±6,2).10 -3 . Ряд других практических подтверждений позволили этому закону утвердиться и принять единую форму, без наличия модификаций. В 2007 г. данную догму перепроверили на расстоянии, меньшем сантиметра (55 мкм-9,59 мм). Учитывая погрешности эксперимента, ученые исследовали диапазон расстояния и не обнаружили явных отклонений в этом законе.

Наблюдение за орбитой Луны по отношению к Земле также подтвердило его состоятельность.

Евклидово пространство

Классическая теория тяготения Ньютона связана с евклидовым пространством. Фактическое равенство с достаточно большой точностью (10 -9) показателей меры расстояния в знаменателе равенства, рассмотренного выше, показывает нам эвклидову основу пространства Ньютоновской механики, с трехмерной физической формой. В такой точке материи площадь сферической поверхности имеет точную пропорциональность по отношению к величине квадрата ее радиуса.

Данные из истории

Рассмотрим краткое содержание истории открытия закона всемирного тяготения.

Идеи выдвигались и другими учеными, живших перед Ньютоном. Размышления о ней посещали Эпикура, Кеплера, Декарта, Роберваля, Гассенди, Гюйгенса и других. Кеплер выдвигал предположение о том, что сила тяготения имеет обратную пропорцию расстоянию от звезды Солнца и распространение имеет лишь в эклиптических плоскостях; по мнению Декарта, она была последствием деятельности вихрей в толще эфира. Существовал ряд догадок, который содержал в себе отражение правильных догадок о зависимости от расстояния.

Письмо от Ньютона Галлею содержало информацию о том, что предшественниками самого сэра Исаака были Гук, Рен и Буйо Исмаэль. Однако до него никому не удалось четко, при помощи математических методов, связать закон тяготения и планетарное движение.

История открытия закона всемирного тяготения тесно связанна с трудом «Математические начала натуральной философии» (1687). В этой работе Ньютон смог вывести рассматриваемый закон благодаря эмпирическому закону Кеплера, уже бывшему к тому времени известным. Он нам показывает, что:

  • форма движения любой видимой планеты свидетельствует о наличичи центральной силы;
  • сила притяжения центрального типа образует эллиптические или гиперболические орбиты.

О теории Ньютона

Осмотр краткой истории открытия закона всемирного тяготения также может указать нам на ряд отличий, которые выделяли ее на фоне предшествующих гипотез. Ньютон занимался не только публикацией предлагаемой формулы рассматриваемого явления, но и предлагал модель математического типа в целостном виде:

  • положение о законе тяготения;
  • положение о законе движения;
  • систематика методов математических исследований.

Данная триада могла в достаточно точной мере исследовать даже самые сложные движения небесных объектов, таким образом создавая основу для небесной механики. Вплоть до начала деятельности Эйнштейна в данной модели наличие принципиального набора поправок не требовалось. Лишь математические аппараты пришлось значительно улучшить.

Объект для обсуждений

Обнаруженный и доказанный закон в течение всего восемнадцатого века стал известным предметом активных споров и скрупулезных проверок. Однако век завершился общим согласием с его постулатами и утверждениям. Пользуясь расчетами закона, можно было точно определить пути движения тел на небесах. Прямая проверка была совершена в 1798 году. Он сделал это, используя весы крутильного типа с большой чувствительностью. В истории открытия всемирного закона тяготения необходимо выделить особое место толкованиям, введенным Пуассоном. Он разработал понятие потенциала гравитации и Пуассоново уравнение, при помощи которого можно было исчислять данный потенциал. Такой тип модели позволял заниматься исследованием гравитационного поля в условиях наличия произвольного распределения материи.

В теории Ньютона было немало трудностей. Главной из них можно было считать необъяснимость дальнодействия. Нельзя было точно ответить на вопрос о том, как силы притяжения пересылаются сквозь вакуумное пространство с бесконечной скоростью.

«Эволюция» закона

Последующие двести лет, и даже больше, множеством ученых-физиков были предприняты попытки предложить разнообразные способы по усовершенствованию теории Ньютона. Данные усилия окончились триумфом, совершенным в 1915 году, а именно сотворением Общей теории относительности, которую создал Эйнштейн. Он смог преодолеть весь набор трудностей. В согласии с принципом соответствия теория Ньютона оказалась приближением к началу работы над теорией в более общем виде, которое можно применять при наличии определенных условий:

  1. Потенциал гравитационной природы не может быть слишком большим в исследуемых системах. Солнечная система является примером соблюдения всех правил по движению небесного типа тел. Релятивистское явление находит себя в заметном проявлении смещения перигелия.
  2. Показатель скорости движения в данной группе систем является незначительным в сравнении со световой скоростью.

Доказательством того, что в слабом стационарном поле гравитации расчеты ОТО принимают форму ньютоновых, служит наличие скалярного потенциала гравитации в стационарном поле со слабо выраженными характеристиками сил, который способен удовлетворить условия уравнения Пуассона.

Масштаб квантов

Однако в истории ни научное открытие закона всемирного тяготения, ни Общая теория относительности не могли служить окончательной гравитационной теорией, поскольку обе недостаточно удовлетворительно описывают процессы гравитационного типа в масштабах квантов. Попытка создания квантово-гравитационной теории является одной из самых главных задач физики современности.

Со точки зрения квантовой гравитации взаимодействие между объектами создается при помощи взаимообмена виртуальными гравитонами. В соответствии с принципом неопределенности, энергетический потенциал виртуальных гравитонов имеет обратную пропорциональность промежутку времени, в котором он существовал, от точки излучения одним объектом до момента времени, в котором его поглотила другая точка.

Ввиду этого получается, что в малом масштабе расстояний взаимодействие тел влечет за собой и обмен гравитонами виртуального типа. Благодаря данным соображениям можно заключить положение о законе потенциала Ньютона и его зависимости в соответствии обратному показателю пропорциональности по отношению к расстоянию. Наличие аналогии между законами Кулона и Ньютона объясняется тем, что вес гравитонов равняется нулю. Это же значение имеет и вес фотонов.

Заблуждение

В школьной программе ответом на вопрос из истории, как Ньютон открыл закон всемирного тяготения, служит история о падающем плоде яблока. Согласно этой легенде, оно свалилось на голову ученому. Однако это - массово распространенное заблуждение, и в действительности все смогло обойтись без подобного случая возможной травмы головы. Сам Ньютон иногда подтверждал данный миф, но в действительности закон не был спонтанным открытием и не пришел в порыве сиюминутного озарения. Как было написано выше, он разрабатывался долгое время и был представлен впервые в трудах о «Математических началах», вышедших на обозрение публике в 1687 году.

Разработки уроков (конспекты уроков)

Среднее общее образование

Линия УМК Б. А. Воронцова-Вельяминова. Астрономия (10-11)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цель урока

Раскрыть эмпирические и теоретические основы законов небесной механики, их проявления в астрономических явлениях и применение на практике.

Задачи урока

  • Проверить справедливость закона всемирного тяготения на основе анализа движения Луны вокруг Земли; доказать, что из законов Кеплера следует, что Солнце сообщает планете ускорение, обратно пропорциональное квадрату расстояния от Солнца; исследовать явление возмущенного движения; применить закон всемирного тяготения для определения масс небесных тел; объяснить явление приливов как следствие проявления закона всемирного тяготения при взаимодействии Луны и Земли.

Виды деятельности

    Строить логичные устные высказывания; выдвигать гипотезы; выполнять логические операции - анализ, синтез, сравнение, обобщение; формулировать цели исследования; составлять план исследования; включаться в работу группы; реализовывать и корректировать план исследования; представлять результаты работы группы; осуществлять рефлексию познавательной деятельности.

Ключевые понятия

    Закон всемирного тяготения, явление возмущенного движения, явление приливов, уточненный третий закон Кеплера.
Название этапа Методический комментарий
1 1. Мотивация к деятельности В ходе обсуждения вопросов подчеркиваются содержательные элементы законов Кеплера.
2 2. Актуализация опыта и предшествующих знаний учащихся и фиксация затруднений Учитель организует беседу о содержании и границах применимости законов Кеплера, закона всемирного тяготения. Обсуждение происходит с опорой на знания учащихся из курса физики о законе всемирного тяготения и его применениях к объяснению физических явлений.
3 3. Постановка учебной задачи Используя слайд-шоу, учитель организует беседу о необходимости доказательства справедливости закона всемирного тяготения, исследования возмущенного движения небесных тел, нахождения способа определения масс небесных тел и исследования явления приливов. Учитель сопровождает процесс деления учащихся на проблемные группы, решающие одну из астрономических задач, и инициирует обсуждение целей деятельности групп.
4 4. Составление плана по преодолению затруднений Учащиеся в группах, исходя из поставленной цели, формулируют вопросы, на которые хотят получить ответы, и составляют план достижения поставленной цели. Учитель корректирует совместно с группой каждый из планов деятельности.
5 5.1 Реализация выбранного плана деятельности и осуществление самостоятельной работы Портрет И. Ньютона представлен на экране в ходе выполнения учащимися самостоятельной групповой деятельности. Учащиеся реализуют план, используя содержание учебника § 14.1 - 14.5. Учитель корректирует и направляет работу в группах, поддерживая деятельность каждого учащегося.
6 5.2 Реализация выбранного плана деятельности и осуществление самостоятельной работы Учитель организует представление учащимися Группы 1 результатов работы, основываясь на заданиях, представленных на экране. Остальные учащиеся конспектируют основные идеи, высказываемые участниками группы. После представления данных учитель акцентирует внимание на коррекции плана, которую осуществляли участники в процессе его реализации, просит сформулировать понятия, с которыми учащиеся впервые встретились в процессе работы.
7 5.3 Реализация выбранного плана деятельности и осуществление самостоятельной работы Учитель организует представление учащимися Группы 2 результатов работы. Остальные учащиеся конспектируют основные идеи, высказываемые участниками группы. После представления данных учитель акцентирует внимание на коррекции плана, которую осуществляли участники в процессе его реализации, просит сформулировать понятия, с которыми учащиеся впервые встретились в процессе работы.
8 5.4 Реализация выбранного плана деятельности и осуществление самостоятельной работы Учитель организует представление учащимися Группы 3 результатов работы. Остальные учащиеся конспектируют основные идеи, высказываемые участниками группы. После представления данных учитель акцентирует внимание на коррекции плана, которую осуществляли участники в процессе его реализации, просит сформулировать понятия, с которыми учащиеся впервые встретились в процессе работы.
9 5.5 Реализация выбранного плана деятельности и осуществление самостоятельной работы Учитель организует представление учащимися Группы 4 результатов работы. Остальные учащиеся конспектируют основные идеи, высказываемые участниками группы. После представления данных учитель акцентирует внимание на коррекции плана, которую осуществляли участники в процессе его реализации, просит сформулировать понятия, с которыми учащиеся впервые встретились в процессе работы.
10 5.6 Реализация выбранного плана деятельности и осуществление самостоятельной работы Учитель, используя анимацию, обсуждает динамику возникновения прилива на определенной части поверхности Земли, подчеркивает влияние не только Луны, но и Солнца.
11 6. Рефлексия деятельности В ходе обсуждения ответов на рефлексивные вопросы необходимо акцентировать внимание на методике выполнения заданий группами, коррекцию плана деятельности в ходе ее выполнения, практической значимости полученных результатов.
12 7. Домашнее задание