Какой комплекс присущ только вторичному строению стебля. Понятие о тканях, классификация тканей

Стебель – осевой орган, вместе с корнем образует единую ось растения. В типичных случаях он имеет цилиндрическую форму и радиальную симметрию. Стебель так же, как и корень, отличается высокой специализацией тканей, которые располагаются концентрическими кругами.

В стебле также различают первичное и вторичное строение. Первичное строение формируется в конусе нарастания. Все ткани стебля при этом являются производными первичной меристемы – верхушечной и боковой. Вторичное строение складывается позже. Оно формируется за счет деятельности вторичной боковой меристемы – камбия.

У двудольных растений первичное строение наблюдается только
в самых молодых органах и очень недолго, затем сменяется вторичным.
У однодольных растений первичное строение сохраняется до конца жизни.

В строении стеблей двудольных и однодольных растений есть существенные отличия. Более простым, менее подвинутым в эволюционном отношении является строение двудольного растения.

Первичное строение стебля двудольного растения.
Анатомическое строение стебля характеризуется радиальной симметрией и очень высокой специализацией тканей. Ткани располагаются концентрическими кругами.

На поперечном разрезе стебля различают три основные зоны – покровную ткань, первичную кору и центральный цилиндр.

Покровная ткань – эпидермис. Эпидермис стебля незначительно отличается: его клетки несколько вытянуты вдоль стебля и имеют относительно меньше устьиц. Эпидермис стебля так же, как и эпидермис листа, может иметь дополнительные защитные образования – воск, кутикулу, волоски. Образуется эпидермис из наружного слоя верхушечной меристемы.

Первичная кора занимает в стебле периферическое положение. Снаружи она ограничена эпидермисом, изнутри – эндодермой, которая является ее самым внутренним слоем.

Первичная кора состоит из двух тканей – колленхимы и основной паренхимы. Колленхима располагается поверхностно, подстилая эпидермис. В стебле двудольного растения встречаются все виды колленхимы – уголковая, пластинчатая, рыхлая, причем первая из них – чаще других. Колленхима в стебле развивается в разной степени. У георгина, тыквы, картофеля уголковая колленхима образует 5–8 рядов клеток, в стебле клевера – 1–2 ряда. В стеблях ребристых, четырехгранных и другой формы она располагается вертикальными тяжами, образуя соответствующие выпуклости стебля. Склеренхима в составе первичной коры у двудольных растений встречается редко.



Основная паренхима составляет внутренний круг первичной коры. Ее клетки, округлые на поперечном сечении и слегка вытянутые на продольном, имеют обычное для этой ткани строение. Очень часто в паренхиме первичной коры, как и в колленхиме, имеются хлоропласты, что обусловливает зеленую окраску молодых стеблей. Для нее обычны клетки с кристаллами оксалата кальция, эфирными маслами и другими продуктами обмена. У многих двудольных и голосеменных растений первичную кору пронизывают млечники и смоляные ходы.

Первичная кора – ткань основного обмена. Здесь энергично проходят процессы синтеза, о чем свидетельствует накопление в коре кристаллов оксалата кальция, смол, камеди, эфирных масел и других продуктов обмена.

Внутренний слой первичной коры, окаймляющий центральный цилиндр, – эндодерма. В стебле она развита гораздо слабее, чем в корне, иногда морфологически не отличима от основной части коры. У некоторых растений эндодерма заметна хорошо, но она имеет иную характеристику. Клетки ее чуть крупнее основных клеток коры, слегка вытянуты в тангентальном направлении, часто содержат много крахмала. Крахмал не обнаруживает подвижности, а сохраняется в эндодерме постоянно, поэтому эндодерму иначе называют крахмалоносным влагалищем.

В эволюционном плане наблюдается редукция эндодермы в стебле. У папоротников и голосеменных растений эндодерма развита лучше, чем у цветковых.

Центральный цилиндр состоит из перецикла, проводящих тканей, сердцевины и сердцевинных лучей.

Перицикл – наружный слой центрального цилиндра, отделяющий кольцо проводящих тканей от тканей первичной коры. По происхождению он представляет собой производное наружных слоев меристематического кольца. В отличие от корня, где перицикл долго сохраняет меристематическую активность, в стебле происходит ранняя дифференциация перицикла. В типичных случаях (стебли кирказона, камнеломки, гвоздики, тыквы) наружная часть перицикла дифференцируется – механическую ткань - склеренхиму, внутренняя - в основную паренхиму.

В стеблях других растений (подсолнечник, лен, клевер, гречиха) кольцо перициклических волокон не образуется. Волокна развиваются только над проводящими пучками, между ними остается слабо дифференцированная паренхимная ткань. Волокна, «возглавляющие» проводящие пучки и называемые обычно лубяными, поскольку они примыкают к лубяной части пучка, многие ботаники относят к перициклу. Однако - есть сведения о том, что лубяные волокна являются производными прокамбия, а не перицикла. Следовательно, они связаны с флоэмой не только по положению, но и онтогенетически, так как образуются в результате дифференциации первых элементов флоэмы. Перицикла в таком случае в стебле нет, проводящие ткани непосредственно граничат с первичной корой и располагаются за перициклом, образуя почти правильный круг. У громадного большинства растений проводящие ткани слагаются в пучки, между которыми остаются радиальные участки основной паренхимы - сердцевинные лучи.

Некоторые двудольные растения не обнаруживают пучкового строения даже на ранних этапах развития. У них прокамбий закладывается сплошным кольцом, а не отдельными тяжами, как в первом случае. Соответственно развиваются и первичные проводящие ткани, образуя почти непрерывный цилиндр (на поперечном разрезе - кольцо) с очень узкими сердцевинными лучами. Такое строение имеют стебли сурепки, табака, вероники, сливы, липы и многих других растений.

Проводящие пучки в стебле двудольных растений коллатеральные и биколлатеральные. И те и другие открытые. Камбий лежит меду флоэмой и ксилемой. Собственно камбий и прилегающие к нему еще недифференцированные его производные образуют камбиальную зону.

Сердцевидные лучи соединяют первичную кору и центральную часть стебля – сердцевину. Сердцевинные лучи находятся в непосредственном контакте с проводящими элементами, и их роль также проводящая. По сердцевинным лучам ток воды, минеральных и органических веществ распространяется в горизонтальной плоскости, передвигаясь в радиальном направлении – от проводящего пучка к живым клеткам коры и сердцевины. Клетки сердцевинного луча живые, паренхимные, слегка вытянутые в радиальном направлении. Их количество, ширина, сложение зависят от вида растений, возраста, количества листьев на побеге.

Сердцевина стебля – паренхимная ткань. Её центральная часть состоит из более крупных клеток, периферическая часть – из более мелких. У многих растений, особенно многолетних, центральная часть сердцевины отмирает и на ее месте образуется полость. Периферическая часть сердцевины преимущественно остается живой и выполняет запасающую функцию. Она называется перимедуллярной зоной (от греч. peri – вокруг, medulla – сердцевина). Эта часть стебля иногда окрашивается под воздействием накапливающихся продуктов обмена.

Вторичное строение стебля

Камбий, его строение и функции. Развитие вторичного строения. Вторичная кора. Вторичная древесина. Травянистые и древесные стебли.

Камбий, его строение и функции. Началом вторичных изменений в стебле является заложение камбия, дея­тельностью которого они обусловлены. Он образуется в пучках (пучковый камбий) и сердцевинных лучах (меж­пучковый). Первый появляется очень рано и берет на­чало от прокамбия. От него отличается тем, что клетки камбия на поперечном разрезе имеют прямоугольные очертания (клетки прокамбия - многоугольные), а так­же характером своих производных. Межпучковый кам­бий имеет иное происхождение. Он образуется в сердце­винном луче путем деления клеток основной паренхимы. Клетки делятся правильными параллельными перего­родками, в результате чего из округлых клеток паренхи­мы вычленяются ровные, прямоугольные на поперечном разрезе клетки камбия. Камбий появляется сначала в клетках, прилегающих к пучку, затем распространяется в глубь сердцевинного луча. Межпучковый и пучковый камбий образуют в стебле сплошное камбиальное кольцо.

Клетки камбия прозенхимны по форме, длина их пре­вышает ширину в десятки раз. Особенно длинны клетки камбия у голосеменных растений-до 5000 мкм. На тангентальных продольных разрезах они почти правиль­ной прямоугольной формы. Клетки камбия живые, име­ют цитоплазму, ядро и все присущие им органеллы. Клетка зрелого камбия сильно вакуолизирована. Состоя­ние цитоплазмы меняется по сезонам, в ней можно заме­тить медленное движение. Ядро продолговатое, находит­ся в центральной части клетки. Имеются лейкопласты и запасные питательные вещества в виде масла. В ради­альных стенках клетки есть простые поры. Камбиальные клетки у высокоорганизованных растений располагаются правильными рядами. Такой камбий называется ярусным.

При образовании новых клеток и тканей камбиаль­ные клетки делятся и тангентальной плоскости. Ядро располагается в центре клетки и делится кариокинетическим путем. Первичная клеточная оболочка образуется между дочерними ядрами, затем наращивается к полю­сам клетки. Одна из дочерних клеток остается камбиаль­ной, вторая дифференцируется в клетку постоянной тка­ни, коры или древесины.

Кроме прозенхимных, в состав камбия входят корот­кие округлые клетки - материнские клетки сердцевинных лучей. В кольце камбия их намного меньше, чем клеток прозенхимных. Участки таких клеток располагаются на равном расстоянии друг от друга.

В связи с увеличением объема осевых органов коль­цо камбия непрерывно удлиняется, число его клеток по окружности увеличивается путем периодических делений в радиальной плоскости. Процесс деления камбиальных клеток описан Бейли (1920).

Развитие вторичного строения. Форма вторичных из­менений зависит от особенностей первичного строения и способа заложения прокамбии. Различают три основных типа вторичного роста: Aristolochia (кирказон)-тип, Heliantus (подсолнечник)-тип, Tilia (липа)-тип. В первом случае (кирказон-тип) в стебле хорошо выражены первичные проводящие пучки, разделенные широкими сердцевинными лучами. Вторичные проводя­щие ткани образуют пучковый камбии, межпучковый - только лучевую паренхиму. В результате вторичного роста увеличиваются размеры проводящих пучков. Образу­ющиеся вторичные ткани оттесняют первичные к перифе­рии пучка. Однако пучковое строение сохраняется. Такую форму вторичного роста имеют кирказон, ломонос, вино­град и другие растения.

Подсолнечник-тип характеризуется тем, что первичные проводящие ткани также сочетаются в пучки. Но вторич­ные проводящие ткани образуются как пучковым, так и межпучковым камбием. Вторичные проводящие пучки, образуемые межпучковым камбием, отличаются от первичных меньшими размерами и отсутствием механической ткани над пучком, которая имеет перициклическое происхождение. При продолжительном действии камбия вторичных пучков становится все больше. Они разраста­ются, и наконец, сливаются между собой, образуя сплош­ное вторичных проводящих тканей. Такую форму вторичного роста имеют имеют фасоль, гречиха, георгин и др.

Липа-тип характеризуется отсутствием пучкового строения даже на ранних этапах развития стебля. Первичные проводящие ткани образуют здесь почти сплошной цилиндр (на поперечном разрезе - кольцо) с очень узкими сердцевинными лучами. Вторичные проводящие ткани также наращиваются сплошным кольцом.

Кроме названных типов, известны разнообразные ти­пы вторичного роста, вызванные заложением дополни­тельных колец камбия, одного или нескольких, в необычном месте - в перицикле (у маревых), в перимедуллярной среде сердцевины (у щавелей). Дополнительный кам­бий формирует проводящие пучки, коллатеральные и кон­центрические.

Вторичная кора. Иначе она называется вторичной флоэмой или вторичным лубом. От первичной коры от­личается происхождением, функцией и гистологическим составом. Первичная кора образуется в результате дифференциации клеток верхушечной т.е. первичной, меристемы и состоит из основной паренхимы. Она располагается кнаружи от центрального цилиндра, составляя самую периферическую часть стебля. Вторичная кора в
отличии от первичной образуется вторичной меристе­мой - камбием. Она входит в состав центрального цилиндра, располагаясь кнаружи от камбия, имеет более сложное строение. В состав вторичной коры входят проводящие ткани, представленные ситовидными трубками и клетками-спутиками, механические ткани в виде склеренхимы и каменистых клеток и основная паренхима. Совокупность механических элементов называется твердым лубом, проводящие элементы и основная паренхима - мягким лубом Во вторичной коре встреча­ются специальные секреторные клетки, смоляные ходы, млечники. Основная функция вторичной коры прове­дение пластических веществ.

Морфологически и функционально важнейшими эле­ментами флоэмы являются ситовидные трубки. У цветковых растений они обнаруживают большое разнообразие формы. Встречаются ситовидные трубки с короткими и длинными члениками, с горизонтально и сильно наклонными конечными стенками, с одной или многими ситовидными пластинками. Флоэма голосеменных растений не имеет клеток-спутников. Она состоит только из ситовидных трубок, на радиальных стенках которых находятся многочисленные ситовидные пластинки.

Механическая ткань во флоэме представлена лубяным волокном. Его клетки прозенхимны по форме, содержи­мого не имеют, оболочки сильно утолщаются и одревесневают, поры простые, округлые или щелевидные. Коли­чество лубяных волокон во флоэме, форма и размер клеток, их расположение относительно разнообразны. У многих растений лубяное волокно в виде тангентальных полосок чередуется с участками ситовидных трубок и па­ренхимы. В других случаях лубяные волокна располага­ются рассеянно между элементами мягкого луба или ра­диальными рядами. Лубяное волокно разных растений одревесневает в разной степени.

Кроме склеренхимы, в составе вторичной флоэмы довольно обычны каменистые клетки. Они имеются во флоэме платанов, бука, тсуги. С возрастом их количество увеличивается.

Лубяная паренхима располагается вертикальными рядами, параллельными ситовидным трубкам. Клетки по форме могут быть сильно вытянутыми, почти веретеновидными или, чаще, только слегка вытянутыми в продольном направлении. Так же, как и лубяное волокно, флоэмная паренхима располагается параллельными рядами или рассеяно среди других элементов флоэмы. Клетки лубяной паренхимы живые, тонкостенные, содержат запасы питательных веществ в виде крахмала или масла. У некоторых растений флоэмная паренхима отсутствует или ее очень мало.

Вторичная древесина. Образуется камбием и наращивается в центробежном направлении. У некоторых одно­летних растений она входит в состав проводящих пучков и виде части древесины, прилегающей к камбию. У большинства растений вторичная древесина образует сплош­ное кольцо, расположенное внутрь от камбия. У много­летних растений прирост древесины возобновляется еже­годно и общая масса ее в стебле становится очень значительной.

У большинства многолетних растений нашей клима­тической зоны в древесине заметна концентрическая сло­истость. Это объясняется периодичностью в дея­тельности камбия. Камбий начинает функционировать рано весной и прекращает деятельность во второй поло­вине лета. Прирост древесины за один год называ­ется годичным кольцом. Анатомически годичное кольцо неоднородно.

Весенняя, или ранняя, древесина состоит из более крупных и тонкостенных клеточных элементов, лет­няя, или поздняя, из более мелких и толстостенных элементов. Поэтому границы смежных годичных колец хорошо выражены, чем и объясняется концентрическая слоистость в сложении древесины.

Вторичная древесина, как и первичная выполняет водопроводящую, механическую и запасающие функции. В соответствии с ними в состав вторичной древесины входят ткани: проводящая в виде сосудов и трахеид, механическая в виде склеренхимы и запасающая в виде ос­новной паренхимы. Строение названных анатомических элементов, их относительное количество и расположение придают древесине разных растений специфические осо­бенности, характерные для определенной таксономиче­ской группы.

Древесина лиственных растений имеет сложный ги­стологический состав и разнообразное строение.

Сосуды разных растений отличаются размерами, строением перфорационной пластинки, типом утолщения клеточной стенки (см. лекцию 12). По расположению со­судов в годичном кольце различают древесину кольцесосудистую и рассеяннососудистую. В первом случае сосуды располагаются преимущественно в ранней дре­весине, в поздней древесине имеются только мелкие со­суды или они совсем отсутствуют. Кольцесосудистой является древесина дуба, ясеня, ильма. Во втором случае сосуды расположены равномерно по всему годичному кольцу, хотя размер их в поздней древесине несколько уменьшается. Рассеяннососудистая древесина у тополя, клена, березы. Между двумя этими типами существуют переходные фор мы.

Трахеиды имеются в древесине почти всех цветковых растений, но занимают в ней разное место. Они либо рав­номерно располагаются по всему годичному кольцу, ли­бо преимущественно находятся в поздней древесине. На поперечном разрезе трахеиды почти не отличимы от либриформа, на продольном же отличаются наличием окай­мленных пор в радиальных стенках.

В древесине многих растений можно видеть переход­ные формы от трахеид к либриформу. Кроме того, встре­чается так называемый перегородчатый либриформ. Его исходная веретеновидная клетка с толстыми вертикальными стенками поделена поперечными стенками на отдельные короткие живые клетки. Такие гистологические элементы приближаются морфологически и функционально к древесинной паренхиме.

Соотношение названных компонентов древесины - судов, трахеид, волокон либриформа, древесинной па­ренхимы - разное и зависит от эволюционной подвинутости вида. Естественно предполагать, что первичными элементами древесины являются трахеиды. Об этом сви­детельствует тот факт, что только из них состоит древе­сина голосеменных растений и некоторых наиболее древних и примитивных видов цветковых. Трахеиды первона­чально совмещают в себе все функции древесины. Впо­следствии происходит дифференциация трахеид, которая приводит к разделению функций и возникновению спе­циализированных проводящих элементов – сосудов - и механических - либриформа.

В эволюционно подвинутых формах функции древеси­ны выполняют высоко специализированные элементы - сосуды, либриформ, древесинная паренхима, - а трахеи­ды развиты слабо пли отсутствуют вовсе. Древесина состоит полностью из трахеид у некоторых видов магнолиевых и нимфейных; примерно равное соотношение трахеид и сосудов в древесине дуба, бука, рябины, только сосуды – в древесине ясеня.

Существенные функции в древесине выполняет основная паренхима. Ее количество и расположение в древесине неодинаковы у разных видов растений.

Древесинная паренхима выполняет запасающую и проводящую роль. Клетки паренхимы живые, по форме округлые или слегка вытянутые в одном направлении, их утолщенные оболочки с простыми порами. Располагается древесинная паренхима горизонтальными и вертикальными рядами. Первые образуют сердцевинные лучи, вторые – собственно древесинную паренхиму.

Если паренхима располагается преимущественно по внешней границе годичного кольца, она называется терминальной (лиственницы, манголии, ивы). Древесинная паренхима называется диффузной, если она непосредственно не связана с сосудами, а располагается рассеяно по всему годичному кольцу. Она характерна для древесины дуба, груши, липы. Древесинная паренхима называется паратрахеальной, если располагается около сосудов, как в древесине клена или ясеня. Паратрахеальная паренхима относительно лучше приспособлена к выполнению своих функций: проведению веществ, обеспечению контакта между водопроводящими элементами древесины и живыми тканями растения.

По данным советского исследователя Г. Б. Кедрова, все живые элементы древесины, вертикальная паренхи­ма и паренхима сердцевинных лучей образуют единую связную систему, что обеспечивает проведение веществ не только в радиальном, но в вертикальном и тангентальном направлениях.

Вторичные сердцевидные лучи в отличие от первичных - производные камбия. Они возникают из специальных камбиальных клеток - инициалей лучей, которые образуются в свою очередь в результате неравномерного деления веретеновидных камбиальных клеток. Образующаяся при таком делении большая клетка остается инициалью вертикальных элементов древеси­ны (трахеид, сосудов, волокон либриформа), а меньшая становится инициалью луча. Камбиальные клетки - инициали лучей - возникают с определенной периодичностью, поэтому расстояние между вторичными сердце­винными лучами в тангентальной плоскости является постоянным (для древесины данного вида). Сердцевинный луч возникает как однорядный, однако последующие де­ления первых производных камбия приводят к возникно­вению двух- и многорядных лучей Клетки сердцевинного луча вытянуты в радиальном направлении и выполняют проводящую функцию. Краевые клетки луча могут быть вытянуты в вертикальном направлении. Посредством этих клеток осуществляется контакт с сосудами. В них откладываются в запас питательные вещества.

Луч называется гомогенным, если слагается из одина­ковых клеток, гетерогенным - если состоит из клеток, разных по строению.

Сердцевинные лучи бывают узкие, если слагается из 1-2 рядов клеток, и широкие, если состоят из многих ря­дов клеток. В средней части каждый сердцевинный луч расширяется. В древесине дуба имеются сердцевинные лучи двух типов - однорядные и многорядные, состоящие из 18-20 рядов клеток. На долю сердцевинных лучей приходится до 20% объема древесины (у голосеменных растений - до 5%).

Вторичные сердцевинные лучи отличаются от первич­ных происхождением (из вторичной меристемы), а так­же морфологически: они уже, короче, не бывают сквоз­ными, т. е. не доходят до сердцевины и первичной коры. Функциональных различий между ними нет.

Древесина голосеменных растений более однородна по составу. От древесины цветковых растений ее отличает отсутствие сосудов и специализированной механической ткани. Водопроводящие ткани в древесине голо­семенных представлены трахеидами, они же выполняют и механическую роль. Ранние трахеиды относительно крупны, тонкостенны, с угловатыми очертаниями на попе­речном срезе. Поздние трахеиды сплющены в радиаль­ном направлении, толстостенны, на поперечном разрезе имеют прямоугольные очертания и узкие полости. При постепенном переходе от ранней древесины к поздней го­дичные кольца почти не заметны, например у пихты. В древесине сосны и лиственницы годичные кольца выра­жены хорошо.

Характерный вид древесине сосны и ели придают смо­ляные ходы. На поперечном разрезе они имеют вид округлой полости, окруженной эпителиальными клетка­ми (4-6 у сосны, 8-10 у ели). Наружные стенки смоля­ного хода толстостенны. Смоляные ходы, расположенные в древесине, -продольные, в сердцевинном луче - попе­речные.

Основной паренхимы в древесине голосеменных расте­ний очень мало. Она присутствует там в виде сердцевин­ных лучей, кроме того, у сосны и ели в небольшом коли­честве располагается вдоль смоляных ходов, а у листвен­ницы - на внешней границе годичного кольца.

Технологические свойства древесины зависят от ее анатомического строения. Насыщенность основной парен­химой, относительное содержание либриформа, толщина клеточных оболочек, количество и расположение сердце­винных лучей, способность к тиллообразованию - эти и другие анатомические особенности определяют удельный вес древесины, твердость, раскалываемость, скважность, степень деформации при высыхании и другие свойства. У многих древесных растений, лиственных и хвойных, древесина с возрастом дифференцируется на ядро и за­болонь.

Ядро - центральная часть древесины. От основной массы молодой древесины оно отличается своей окраской, которая зависит от накапливающихся смол, камедей и других конечных продуктов обмена. Ядро может быть окрашено в желтый, бурый, коричневый, вишневый, си­ний и другие цвета. Оно состоит из самых старых годичных колец и как проводящая ткань не функционирует, а выполняет только механическую роль. Благодаря большой прочности, красивой окраске, малому содержанию воды ядровая древесина высоко ценится как поделочный материал. Ядро образуется в древесине сосны, листвен­ницы, дуба, каштана, акации, ильма, барбариса и др.

Периферическая часть древесины, по которой осуще­ствляется передвижение воды и минеральных веществ, называется заболонью. У сосны и лиственницы забо­лонь составляет 20 и более годичных колец, у дуба - 8, у акации - 4, т. е. ядро у названных лиственных пород образуется значительно раньше, чем у хвойных.

Разделение древесины на ядро и заболонь наблюда­ется далеко не у всех древесных растений. Если цен­тральная часть древесины не функционирует как ткань проводящая, но цветом не отличается от молодой древе­сины, она называется спелой. Морфологически и функци­онально спелая древесина соответствует ядру, отличаясь от него только отсутствием специфической окраски. Заболонь и спелую древесину различают в стебле ели, пих­ты, липы, бука, осины. Некоторые древесные растения - клен, ольха, береза, осина - не образуют ни ядра, ни спе­лой древесины.

Травянистые и древесные стебли. Травянистые стеб­ли характеризуются относительно большой паренхиматизацией. Проводящие и механические ткани в них занимают относительно меньше места и находятся в непосред­ственном и очень тесном контакте с живыми клетками основной паренхимы. Древесные растения отличаются более компактным расположением проводящих и механических тканей, которые образуют мощно развитое кольцо. Основной паренхимой эта часть стебля древесного расте­ния насыщена гораздо меньше.

В строении стебля травянистых и древесных растений принципиальный отличий нет. Если в верхних междо­узлиях стебля травянистого растения наблюдается пуч­ковое строение, то в нижних уже формируется сплошное кольцо вторичной древесины. У древесных форм также самые молодые участки стебля имеют пучковое строение, но благодаря очень высокой активности камбия вскоре развивается вторичная древесина, образующая первое го­дичное кольцо.

Древесные стебли являются первичными и более примитивными формами, травянистые - вторичными и более подвинутыми в эволюционном отношении. Доказательст­вами служат следующие факты. Во-первых, травянистые стебли обнаруживают сходство с древесными в нижних междоузлиях, наиболее консервативных в своем строении. В их структуре обычно проявляются признаки, при­сущие предкам (В. Г. Александров, А. Л. Тахтаджян). Кроме того, по степени специализации проводящих тка­ней древесные формы более примитивны. Для травянис­тых же характерны самые совершенные виды сосудов, состоящие из коротких члеников с простой перфорацией. Самые примитивные семейства в типе цветковых пред­ставлены полностью или преимущественно древесными формами. В более же эволюционно подвинутых семейств древесных форм относительно меньше или нет совсем. Если в одном семействе имеются и древесные и травяни­стые формы, то последние по строению стебля, цветка, приспособлениям к опылению оказываются более специа­лизированными, древесные же виды - более прими­тивными.

Эти и другие факты свидетельствуют о том, что дре­весные формы в типе цветковых растений являются пер­вичными, а травянистые растения возникли в результате их эволюции.

Основные ткани составляют большую часть тела растений по массе и объёму. Благодаря форме клеток они называются также паренхимными. Основные ткани располагаются во всех вегетативных и репродуктивных органах покрытосеменных: в корнях, стеблях, листьях и их видоизменениях, а также в цветках, плодах и семенах. Кроме того, паренхимы хорошо развиты у высших споровых растений и у голосеменных. В клетках основных тканей происходит фотосинтез и газообмен, образование и запасание питательных веществ, некоторые другие физиологические процессы. Разнообразие функций определяет разнообразие особенностей их клеточного строения. По происхождению основные ткани могут быть первичными и вторичными. Первичные возникают из меристем зародыша семени, конуса нарастания побега и кончика корня. Вторичные паренхимы появляются благодаря образованию и жизнедеятельности камбия. В зависимости от выполняемых функций паренхимные ткани подразделяются на основные, ассимиляционные, запасающие, водозапасающие и воздухоносные.Основная паренхима

Основная паренхима располагается в органах растений обширными участками. Клетки этой паренхимы крупные, тонкостенные, округлой, кубической и призматической формы, могут иметь как плотное, так и рыхлое сложение. В них отсутствуют пластиды, но хорошо развиты вакуоли. Из клеток основной паренхимы образуются различные анатомические комплексы:

Сердцевина стебля, способная запасать питательные вещества;

Сердцевинные лучи древесины, по которым осуществляется радиальный транспорт веществ;

Горизонтальная паренхима, или сердцевинные лучи вторичной коры, расположенные между участками флоэмы и связанные с радиальным транспортом веществ;

Вертикальная паренхима, входящая в состав вторичной флоэмы, где она может запасать питательные веществ;

Основная паренхима в составе коры корня первичного анатомического строения, а также проводящих пучков у двудольных покрытосеменных.

Помимо транспорта воды и растворенных в ней веществ, а также их запасания, основную паренхиму отличает способность к дифференциации и формированию вторичных образовательных тканей – камбия и пробкового камбия. В естественных условиях это обеспечивает переход к вторичному анатомическому строению корня и стебля, образование перидермы и корки, а также раневой меристемы и раневой перидермы.

    Ассимилляционная паренхима

Наличие ассимиляционной паренхимы является важным отличительным признаком высших автотрофных растений. Благодаря наличию хлоропластов она имеет зелёный цвет в активном состоянии и часто называется хлоренхимой. В клетках хлоренхимы протекают реакции фотосинтеза и связанные с ними биохимические процессы (синтез АТФ, фотодыхание и др.), а также газообмен и транспирация.

Для клеток хлоренхимы характерны тонкие оболочки, хорошо развитые вакуоли, многочисленные хлоропласты, которые занимают до 80% объема протоплазмы. Хлоренхима располагается во всех зелёных частях растений. Лучше всего она развита в мезофилле листа.

Ассимиляционная паренхима хорошо развита в зелёных частях цветка и в незрелых плодах. В меньшем количестве она встречается в корнях у водных растений (ряска и др.) и в воздушных корнях эпифитов (орхидеи и др.).

Образование ассимиляционной паренхимы генетически детерминировано. Вместе с тем её развитие и интенсивность жизнедеятельности в значительной мере зависит от факторов окружающей среды: температуры воздуха и почвы, обеспеченности водой и элементами минерального питания, освещенности и длины светового дня.

    Запасающая паренхима

Запасные питательные вещества – углеводы, белки, жиры, а также вторичные продукты обмена – алколоиды, гликозиды, дубильные вещества и др. Для клеток этой ткани функция запасания является главной.

Запасающая паренхима образована, как правило, крупными тонкостенными живыми клетками с хорошо развитыми лейкопластами, комплексом Гольджи, вакуолями. По мере созревания запасающих органов плотность сложения клеток может уменьшаться и ткань приобретает рыхлое сложение, как у плодов некоторых позднеспелых сортов яблони.

Запасание может происходить в разных частях клеток. Например, водорастворимые моно- и дисахариды могут накапливаться в клеточном соке плодов (виноград, груша) и корней (сахарная свекла); крахмал – в амилопластах клубней (картофель), преобразуемых при этом в крахмальные зерна; капли жира встречаются в цитоплазме семян (подсолнечник) и плодов (маслины); белки могут запасаться в вакуолях и при обезвоживании клетки образовывать сферокристаллы алейроновых зерен (пшеница). Гемицеллюлоза откладывается в клеточных оболочках, при этом они утолщаются, как, например, в семенах финиковой пальмы.

    Водозапасающая паренхима

Особым случаем запасающей паренхимы является водозапасающая ткань. Она характерна для листовых (алоэ, очиток) и стеблевых (кактус) суккулентов и других растений, возникших в условиях дефицита влаги.

Водозапасающая ткань располагается в глубине вегетативного органа под ассимилляционной паренхимой и обкладочными клетками. Клетки этой паренхимы крупные, тонкостенные, с хорошо развитыми вакуолями. В клеточном соке содержится водоудерживающая слизь, которая уменьшает потери воды при испарении.

    Воздухоносная паренхима

Воздухоносная паренхима, или аэренхима, характерна для водно-болотных растений, у которых корни и корневища располагаются в толще грунта под водой и испытывают постоянный недостаток кислорода (белокрыльник болотный, камыш озерный, кубышка желтая и др.). Она формируется из небольших округлых клеток, как у кубышки и рдеста, или звездчатых, как у ситника. Эти клетки располагаются в стеблях и корневищах в виде цепочек, которые окружают крупные межклетники, по которым перемещается воздух. В местах, где цепочки клеток соприкасаются, часто располагается мелкоклеточная склеренхима, придающая прочность стеблю.

Аэренхима выполняет вентиляционную функцию, а также обеспечивает плавучесть водных растений.

    Ткани, связанные с гетеротрофным питанием растений.

Питание растений гетеротрофов обеспечивается деятельностью специальных паренхимных клеток, которые способны синтезировать пищеварительные ферменты и всасывать переваренные вещества. Эти клетки располагаются, как правило, на видоизмененных листьях и корнях.

    Первичное и вторичное строение стебля. Функции стебля.

Стебель представляет собой ось побега, несущая листья и почки. Основные функции стебля - опорная и проводящая. Стебель осуществляет связь между корнями и листьями. Кроме того, в стебле нередко откладываются запасные питательные вещества. Иногда стебель - ассимилирующий орган.

Анатомия стебля.

Анатомическое строение стебля более разнообразно, чем у корня. Различают первичное и вторичное строение стебля. Первичное строение стебля сохраняется всю жизнь у растений, лишенных камбия, снаружи стебель таких растений покрыт эпидермой, под ней – первичная кора, окружающая стелу. Прокамбий, первичная латеральная образовательная ткань, образующийся из конуса нарастания, полностью расходуется на формирование первичной флоэмы и ксилемы. Камбий в пучках отсутствует, такие пучки называют закрытыми.

Первичное строение стебля. Под эпидермой расположена первичная кора, образованная клетками паренхимы, часто содержит хлоропласты. Внутренний слой первичной коры - эндодерма носит название крахмалоносного влагалища, так как ее клетки много крахмальных зерен.

Наружный слой клеток стелы, так же как и у корня, называется перицикл и сохраняет функцию меристематической активности – здесь могут закладываться придаточные почки и придаточные корни. Отличительной особенностью стебля является образование в центре сердцевины из паренхимных клеток. В корне сердцевина отсутствует.

Вторичное строение стебля. Если прокамбий закладывается в виде отдельных групп клеток, то в дальнейшем, после образования ксилемы и флоэмы формируется пучковый тип строения стебля. После образования камбия будет закладываться вторичная ксилема и флоэма и такие пучки называются открытыми, межпучковый камбий образует клетки паренхимы стебля и образуется эвстела. Если межпучковый камбий формирует ксилему и флоэму, то образуется переходный тип строения стебля, при котором проводящие ткани образуют кольцо неправильной формы.

    Для древесных растений характерен непучковый тип строения стебля, когда прокамбий образуется сплошным кольцом, формируя первичную ксилему и флоэму, а затем образуется камбий и происходит вторичный рост стебля.

    Под эпидермой закладывается пробковый камбий – феллоген. Он откладывает наружу клетки пробки, а внутрь – клетки феллодермы. Пробка, феллоген и феллодерма образуют общий вторичный покров – перидерму. Под некоторыми устьицами закладываются чечевички. У двух-трехлетней ветви липы под перидермой находятся кора (первичная и вторичная), камбий, древесина и сердцевина.

    Под первичной корой находится флоэма (луб) – вторичная кора, содержащая проводящие ткани – ситовидные клетки и ситовидные трубки с клетками спутницами, механические ткани – лубяные волокна и основные ткани – клетки лубяной паренхимы, выполняющие запасающую функцию. Во вторичной коре хорошо просматриваются сердцевинные лучи. На срезах сердцевинные лучи имеют вид светлых треугольников. Они чередуются с трапецевидными участками флоэмы.

    Под корой находится камбий, вторичная латеральная меристема. Большая часть стебля образована клетками, возникшими в результате деятельности камбия, располагающегося между вторичной корой и древесиной. Именно благодаря ему происходят вторичные изменения в строении стебля. Обычно в древесину камбий откладывает большее число производных, чем наружу, соотношение 4:1 соответственно. Весной клетки камбия активно делятся, с приближением осени деятельность камбия ослабевает, и зимой он вступает в период покоя.

    Древесина. Внутрь от камбия откладываются клетки древесины (вторичной ксилемы), в состав которой входят сосуды, трахеиды, древесная паренхима и древесная склеренхима (волокна). Особенностью ксилемы является одревеснение клеточных стенок (за исключением клеток древесной паренхимы). Вторичная ксилема составляет основную массу (9/10 объема) древесного стебля.

    Сердцевина. В центре стебля находится сердцевина, образованная округлыми паренхимными клетками. Она окружена небольшим количеством сосудов первичной ксилемы

В результате деятельности прокамбия и остальной первичной меристемы конуса нарастания образуется первичное строение стебля. В первичном стебле обычно различают первичную кору и стелу (центральный цилиндр). В отличие от корня первичная кора снаружи покрыта эпидермой. Рост стебля в толщину осуществляет камбий, образующий вторичные ткани. Он возникает в виде цилиндра между первичной ксилемой и первичной флоэмой и остается в относительно том же положении неопределенно долго, откладывая по направлению к центру оси вторичную ксилему, а кнаружи - вторичную флоэму. Вторичное утолщение происходит также в результате деятельности феллогена (пробкового камбия).

1 - эпидерма, 2 - склеренхима, 3 - хлоренхима, 4 - закрытый коллатеральный пучок, 5 - основная паренхима, 6 - полость.

Основы учения о тканях были заложены еще в XVII веке, когда было установлено клеточное строение растений. Это открытие было сделано в 1665 г. англичанином Р. Гуком. Изучая под микроскопом срез бутылочной пробки, он обнаружил в нем систему замкнутых пузырьков, или ячеек. Впоследствии их стали называть клетками, хотя на самом деле эти ячейки представляли собой только оболочки клеток.

Рис . Портрет Роберта Гука, современная реконструкция по описаниям его коллег, 2006 год

Рис. Микроскоп Роберта Гука (из Вермеля, 1970)

Рис. Срез пробкового дерева (из книги Роберта Гука, 1635-1703)

Изучение клеточного строения разных органов растений, проведенное М. Мальпиги (1628-1694) и Н. Грю (1641-1712), позволило им прийти к выводу о единообразии строения растений. Полагая, что растительная масса состоит из отдельных сложно переплетенных элементов и по структуре напоминает текстильные ткани, Н. Грю предложил термин «ткань» и обосновал положение, что все органы растений имеют всегда определенное, типичное для них строение.

В 1807 г. Г. Ф. Линк (1767-1851) ввел понятие о паренхиматических и прозенхиматических клетках. Первую группу составляют клетки шаровидные, полиэдрические (изодиаметрические) или слегка призматические, вторую - более или менее длинные, с заостренными концами. Ткани, состоящие из этих клеток, стали называть соответственно паренхимой и прозенхимой .

Ботаники второй половины XIX века А. де Бари (1831-1888) и Ф. ван Тигем (1839-1914) называли тканью совокупность клеток одинакового строения, независимо от того, разбросаны они в теле растения или составляют компактные группы.

Классифицируя ткани, Ф. ван Тигем обращал внимание на наличие в клетках живого содержимого. По этому признаку он разделил ткани на живые и мертвые. К последним он отнес ткани, выполняющие в растении опорную роль и участвующие в проведении веществ. Условность такого разделения тканей очевидна: мертвые ткани на ранних стадиях развития состоят из живых клеток, а клетки живых тканей со временем могут терять содержимое и переходить в разряд мертвых.

Ю. Сакс (1832-1897) различал в растениях покровную , пучковую и основную ткани . Этой классификацией пользуются и в настоящее время. Неудобство её состоит в том, что в одну ткань часто попадают клетки, разные не только по строению, но и по выполняемым функциям. Так, пучковую ткань составляют клетки, проводящие воду и растворы органических веществ, а также клетки с толстыми одревесневшими оболочками, играющие механическую роль. Еще большее число функционально разных клеток объединяет основная ткань. Нередко к тому же участки этой ткани могут быть разрозненными, часто они находятся в разных частях растения и топографически не составляют непрерывную систему.

Все это усложняет определение термина «ткань» и создает трудности в отношении классификации тканей.

Пожалуй, наиболее удачное определение тканей, которым пользуются и в настоящее время, предложено в конце XIX века Ф. Габерландтом (1826-1878). Ткань - это устойчивый комплекс клеток, обладающих одним или несколькими сходными признаками: физиологическими, морфологическими, топографическими и общностью происхождения. Каждый из этих признаков может быть использован для классификации тканей, но, учитывая, что только согласованное функционирование разных тканей может обеспечить осуществление всех присущих любому организму жизненных процессов, наиболее целесообразна группировка тканей по анатомо-физиологическому принципу.

Ткани и локальные структуры, выполняющие одинаковые функции, Ф. Габерландт объединил в 9 систем:

1. покровную (эпидерма, пробка, экзодерма);

2. механическую (колленхима, склеренхима, волокна либриформа, лубяные волокна, склереиды);

3. абсорбционную (ризоиды, эпиблема, или ризодерма, гиалиновые клетки, веламен);

4. ассимилирующую (хлоренхима);

5. проводящую (ксилема, или древесина; флоэма, или луб);

6. запасающую (эндосперм; перисперм; запасающая паренхима вегетативных органов; водозапасающие волоски);

7. проветривающую (вентиляционную) (аэренхима, межклетники, устьица, чечевички);

8. секреторную и выделительную (железистые волоски, внутренние железки, слизевые и смоляные ходы и клетки, масляные клетки, гидатоды, млечники);

9. образовательную (меристема зародыша, конуса нарастания побега, кончика корня, прокамбий, камбий, феллоген, раневая меристема).

Строение тканей и их расположение в теле растения подчинено принципу максимальной физиологической активности. Наряду с главной, ткань может выполнять одну или несколько дополнительных функций. Это определяет морфологическую дифференциацию составляющих ее клеток.

Так, эпидерма, или кожица, не только защищает внутренние ткани от неблагоприятных факторов внешней среды, но участвует также в газообмене и транспирации, у многих растений она выполняет секреторную и выделительные функции благодаря железистым волоскам и накоплению в обычных клетках некоторых балластных продуктов метаболизма растений. Ксилема, или древесина, осуществляет восходящий ток воды с растворенными в ней минеральными веществами, обеспечивает механическую прочность растения, у многолетних растений некоторые ее клетки служат вместилищами запасных веществ. Этой полифункциональностью объясняется неоднородность ее строения. То же можно сказать о флоэме, или лубе. Такие ткани называют сложными в отличие от простых , состоящих из одинаковых по строению и функциям клеток. Простые ткани - это, например, колленхима, веламен, эндосперм.

В типичных случаях стебель имеет цилиндрическую форму и радиальную симметрию. Стебель отличается высокой специализацией тканей, которые на поперечном разрезе располагаются кругами.В стебле различают первичное и вторичное строение. Первичное строение формируется в конусе нарастания. Все ткани стебля при этом являются производными первичной меристемы. Вторичное строение, если оно есть, складывается позже. Оно формируется за счёт деятельности вторичной боковой меристемы – камбия и феллогена.

У двудольных и голосеменных растений первичное строение наблюдается в молодых стеблях; впоследствии оно сменяется вторичным.В стеблях чётко выражены три зоны: эпидерма, первичная кора, центральный цилиндр (стела), занимающий всю остальную часть стебля. Эпидерма имеет типичное строение. Она дифференцируется раньше других тканей. Первичная кора сложена колленхимой и паренхимой. В первичной коре могут развиваться воздухоносные полости и вместилища выделений. Самый внутренний слой первичной коры состоит из плотно расположенных клеток, заполненных зёрнами крахмала. Центральный цилиндр состоит из перицикла, проводящей системы и сердцевины, которая может разрушаться и на её месте образуется воздухоносная полость. У большинства двудольных открытые проводящие пучки расположены кольцом вокруг сердцевины.Развитие вторичного строения стебля. Проводящие пучки растений способны к вторичному утолщению. Поэтому началом вторичных изменений в стебле является заложение межпучкового камбия. Он образуется в сердцевинных лучах путём деления клеток основной паренхимы. Затем камбий распространяется вглубь сердцевинного луча. Межпучковый и пучковый камбий образуют сплошное кольцо.Основные типы вторичного роста двудольных растений: Различают три основных типа вторичного роста: пучковый (кирказон), непучковый (подсолнечник) переходный (липа).

В первом случае первичные проводящие ткани образуют систему обособленных пучков, разделённых широкими сердцевинными лучами. Вторичные проводящие ткани образует пучковый камбий, а межпучковый камбий – лучевую паренхиму. Образующиеся вторичные ткани оттесняют первичные к периферии пучка, но первичный план строения сохраняется.

Во втором случае первичные проводящие ткани образуют систему обособленных пучков, но вторичные проводящие ткани формируются пучковым и межпучковым камбием, поэтому образуется сплошной цилиндр вторичных проводящих тканей.В третьем случае первичные проводящие ткани образуют почти непрерывный проводящий цилиндр, так как межпучковые лучи очень узкие. И вторичные проводящие ткани откладываются камбием таким же образом.У стебля, так же как и у корня, ниже конуса нарастания в зоне зачаточных листьев происходит дифференциация клеток первичной меристемы и образуется первичное строение. У голосеменных и большинства двудольных покрытосеменных вслед за этим появляется латеральная меристема – камбий, в виде сплошного камбиального цилиндра, образующий вторичные проводящие ткани и обуславливающий таким образом рост стебля в толщину.У древесных растений камбий образуется из сплошного кольца прокамбия и на всем протяжении дифференцируется в элементы флоэмы и ксилемы. Так возникает непучковое, или сплошное строение.

Происхождение камбия у травянистых двудольных растений может быть различным. У одних растений он возникает очень рано из сплошного кольца прокамбия, вслед за появлением первичных элементов ксилемы и флоэмы. В этом случае образуется непучковое строение стебля. У других растений прокамбий закладывается тяжами и камбий возникает не только из прокамбия, но и из паренхимы между уже сформировавшимися проводящими пучками. В этом случае образуется либо пучковое, либо переходное строение стебля.Пучковое строение будет в том случае, если межпучковой камбий дифференцируется только в паренхиму. Пучки располагаются на одинаковом расстоянии от поверхности стебля. Пучки у двудольных бывают частными и общими. Пока пучок следует вниз по стеблю, не сливаясь с другими пучками, его называют частным, или листовым следом. Эти пучки отделены от соседних пучков паренхимными тканями. Когда частные пучки соприкасаются друг с другом, то границы между ними исчезают, и образуется общий пучок.Переходное строение образуется в том случае, если межпучковой камбий, так же как и пучковой, образует гистологические элементы флоэмы и ксилемы. Лишь у немногих травянистых двудольных не образуется сплошной камбиальный цилиндр, а камбий находится только внутри пучков, между которыми расположена паренхима. У таких растений стебель не может сильно утолщаться. У травянистых двудольных растений выделяют первичную кору и видоизмененный центральный цилиндр (стела). Феллоген у них либо слабо развит, либо отсутствует. Первичная кора в процессе развития изменяется мало, только становится тоньше в результате растяжения. Центральный цилиндр включает ткани, возникающие из перицикла, остатки первичной флоэмы и вторичную флоэму, камбий, вторичную и остатки первичной ксилемы и сердцевину. Механические ткани редуцированы.

Побег имеет систему меристем (образовательных тканей), поддерживающих нарастание тканей в дли­ну и толщину. Рост побега в длину осуществляется за счет верхушечной (апекальной ) и вставочных (интеркалярных ) меристем, а в толщину – за счет боковых мери­стем : прокамбия, камбия, феллогена и отчасти перицикла. На начальных этапах развития побега складывается первичная анатомическая структура стебля, со­храняющаяся у однодольных и споровых растений в течение всей жизни. У двудольных и голосемен­ных первичная структура довольно быстро нарушается в результате разного рода вторичных изменений (главным образом благодаря деятельности камбия и феллогена) и в итоге формируется вторичное строение стебля.

Первичная структура стебля складывается по мере дифференциации кле­ток верхушечной (апекалъной) меристемы. Самые наружные ее слои преобразу­ются в протодерму, клетки которой формируют первичную покровную ткань – эпидерму. На уровне первых листовых примордиев (зачатков листьев) из клеток расположенных на периферии и в центре апекса формируется основная меристе­ма, которая в свою очередь образует сердцевину и первичную кору. Между ними сохраняются несколько рядов активных меристематических клеток, располагаю­щихся кольцом, которое называется образовательным. Клетки образовательного кольца в основании молодых зачатков листьев дают начало первичной боковой меристеме – прокамбию (в виде пучков или сплошным кольцом). У многих дву­дольных клетки образовательного кольца, расположенные между тяжами прокам­бия дифференцируются позднее в паренхимные элементы – сердцевинные лучи, соединяющие сердцевину с первичной корой. В стеблях травянистых двудольных растений клетки образовательного кольца, не участвующие в образовании про­камбия, дают начало другой меристеме – перициклу, который дает начало парен­химе или склеренхиме.

Прокамбий является предшественником первичных проводящих тканей: пер­вичной флоэмы и первичной ксилемы. Флоэма начинает формироваться раньше ксилемы. Она закладывается в наружных частях прокамбиальных тяжей или прокамбиального кольца и развивается центростремительно. Ксилема закладывается во внутренних участках прокамбия и развивается центробежно – навстречу фло­эме.

Образовавшиеся из прокамбия первичные флоэма и ксилема составляют ос­нову осевого (центрального) цилиндра или стелы.

Вся стела, занимающая центральную часть стебля, состоит из проводящих тканей , сердцевины (иногда она разрушается), перицикла (если он имеется) и тех постоянных тканей, которые из него возникают (паренхима и склеренхима ). Сердцевина располагается внутрь от проводящей ткани и обычно состоит из отно­сительно тонкостенных паренхимных клеток. В ней часто откладываются запас­ные питательные вещества. Иногда часть сердцевины разрушается и образуется полость .


Для большинства двудольных характерна эустела – стела, главным компо­нентом которой являются расположенные кольцом проводящие пучки (рис. 6.8). У многих древесных растений стела непучкового строения (флоэма и ксилема располагаются сплошным кольцом вокруг кольца прокамбия и позднее камбия) (рис. 6.9).