Коронный разряд возникает. Коронный разряд и его характеристики

Коронный разряд

электрическая корона, разновидность тлеющего разряда (См. Тлеющий разряд); возникает при резко выраженной неоднородности электрического поля вблизи одного или обоих электродов. Подобные поля формируются у электродов с очень большой кривизной поверхности (острия, тонкие провода). При К. р. эти электроды окружены характерным свечением, также получившим название короны, или коронирующего слоя. Примыкающая к короне несветящаяся («тёмная») область межэлектродного пространства называется внешней зоной. Корона часто появляется на высоких остроконечных предметах (святого Эльма огни), вокруг проводов линий электропередач и т. д.

К. р. может иметь место при различных давлениях газа в разрядном промежутке, но наиболее отчётливо он проявляется при давлениях не ниже атмосферного. Разряд начинается, когда напряжение U между электродами достигает так называемого «начального потенциала» короны U 0 (типичные значения - тысячи и десятки тысяч в ). Ток К. р. пропорционален разности U-U 0 и подвижности образующихся в разряде ионов газа (см. Подвижность ионов и электронов); он обычно невелик (доли ма на 1 см длины коронирующего электрода). При повышении U яркость и толщина коронирующих слоев растут. Когда U достигает потенциала «искрового перекрытия», К. р. переходит в Искровой разряд .

Если коронирует только анод, корона называется положительной. В этом случае первичные электроны высвобождаются на внешней границе коронирующего слоя в результате фотоионизации газа (см. Ионизация) фотонами, испускаемыми внутри короны. Ускоряясь в поле анода, эти электроны ударно возбуждают атомы и ионы газа и в актах ударной ионизации порождают электронные лавины. Во внешней зоне носителями тока являются положительные ионы; образуемый ими положительный пространственный заряд ограничивает ток К. р.

В отрицательной короне положительные ионы, ускоренные сильным полем вблизи коронирующего катода, выбивают из него электроны (Вторичная электронная эмиссия). Вылетев из катода, электроны ударно ионизуют газ, порождая лавины и обеспечивая воспроизводство положительных ионов. В чистых электроположительных газах ток во внешней зоне переносится электронами, а в присутствии электроотрицательных газов, обладающих сродством к электрону (См. Сродство к электрону), - отрицательными ионами, возникающими при «слипании» электронов и нейтральных молекул газа (см. Электроотрицательность). Эти электроны или ионы образуют во внешней зоне отрицательный пространственный заряд, ограничивающий ток К. р.

В двуполярной короне коронируют оба электрода. Процессы в коронирующих слоях аналогичны описанным; во внешней зоне ток переносится встречными потоками положит, ионов и электронов (или отрицательных ионов).

При периодическом изменении полярности электродов (К. р. переменного тока) малоподвижные тяжёлые ионы во внешней зоне не успевают достичь электродов за время одного полупериода, и возникают колебания пространственного заряда. К. р. на частотах порядка 100000 гц и выше называется короной высокочастотной (См. Корона высокочастотная).

В К. р. электрическая энергия преобразуется главным образом в тепловую - в соударениях ионы отдают энергию своего движения нейтральным молекулам газа. Этот механизм вызывает значительные потери энергии на высоковольтных линиях передач. Полезное применение К. р. нашёл в процессах электрической сепарации (См. Электрическая сепарация) (например, в электрических фильтрах (См. Электрический фильтр)), электрической окраски (в частности, для нанесения порошковых покрытий), а также при регистрации ионизирующего излучения (Гейгера - Мюллера счётчик ами).

Лит.: Капцов Н. А., Коронный разряд и его применение в электрофильтрах, М., 1947; Леб Л., Основные процессы электрических разрядов в газах, пер. с англ., М.- Л., 1950; Грановский В. Л., Электрический ток в газе. Неустановившийся ток, М., [в печати].

А. К. Мусин.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Коронный разряд" в других словарях:

    Высоковольтный самостоят. электрический разряд в газе при давлении p?1 атм, возникающий в резко неоднородном электрич. поле вблизи электродов с большой кривизной поверхности (острия, провода). В этих зонах происходят ионизация и возбуждение нейтр … Физическая энциклопедия

    Электрический разряд в газе, возникающий обычно при давлении не ниже атмосферного, если электрическое поле между электродами (в виде острий, тонких проводов) неоднородно. Ионизация и свечение газа в коронном разряде происходят только в… … Большой Энциклопедический словарь

    коронный разряд - коронный разряд; корона Разряд, при котором сильно неоднородное электрическое поле дополнительно заметно искажено объемными зарядами ионов вблизи электродов, где происходит ионизация и возбуждение (свечение) газа или жидкости … Политехнический терминологический толковый словарь

    коронный разряд - Более или менее постоянный светящийся электрический разряд в атмосфере, исходящий от возвышающихся над землей предметов или от летящих воздушных судов, иногда сопровождается треском. Syn.: огни святого Эльма … Словарь по географии

    коронный разряд - корона — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия Синонимы корона EN coronacorona discharge … Справочник технического переводчика

    У этого термина существуют и другие значения, см. Разряд … Википедия

    Электрический разряд в газе, возникающий обычно при давлении не ниже атмосферного, если электрическое поле между электродами (в виде острых, тонких проводов) неоднородно. Ионизация и свечение газа в коронном разряде происходят только в… … Энциклопедический словарь

    Корона, электрический разряд в газе, возникающий обычно при давлении не ниже атмосферного, если электрическое поле вблизи одного или обоих электродов резко неоднородно. Подобные поля формируются у электродов с очень большой кривизной поверхности… … Энциклопедия техники

    коронный разряд - vainikinis išlydis statusas T sritis fizika atitikmenys: angl. corona discharge vok. Koronaentladung, f rus. коронный разряд, m pranc. décharge en couronne, f … Fizikos terminų žodynas

    Корона (от лат. corona венец, венок), электрический разряд в газе, возникающий обычно при давлении не ниже атмосферного, если электрич. поле между электродами (в виде острий, тонких проводов) неоднородно. Проявляется в виде свечения ионизиров.… … Большой энциклопедический политехнический словарь

Коронный разряд - самостоятельный разряд, который возникает только при условии очень большой неоднородности электрического поля хотя бы у одного из электродов (острие - плоскость, нить - плоскость, две нити, нить в цилиндре большого радиуса и т.д.). Условия возникновения и развития короны различные при разной полярности «острия» (назовем так электрод, вблизи которого Е сильно неоднородно).

Если острие - катод (корона «отрицательная»), то зажигание короны по существу происходит так же, как в тлеющем разряде, только для определения первого коэффициента Таунсенда  (так как поле Е сильно неоднородное) в воздухе (практически важный случай) надо учитывать прилипание (наличие кислорода), так что

((x )- п (x ))dx =ln(l+ -1), (8.26)

где  п - коэффициент применения, x 1 - расстояние до точки, в которой Е уже так мало, что ионизация не происходит: Е  0. В такой короне есть свечение только до расстояния, тоже примерно, равного x 1 . Если «острие» - анод (корона «положительная»), то картина существенно меняется: около острия наблюдаются светящиеся нити, как бы разбегающиеся от острия (рис. 8.9). Вероятно, это стримеры от лавин, зарожденных в объеме фотоэлектронами. Очевидно, что и критерий зажигания другой - такой, как для образования стримера. В любом коронном разряде существенна неоднородность Е, т.е. конкретная геометрия электродов.

Полной ясности в механизме горения разряда нет, но это не мешает применению коронных разрядов в промышленности (электрофильтры); в счетчиках Гейгер-Мюллера тоже работает коронный разряд. Но он бывает и вреден, например, на высоковольтных линиях (ЛЕП) коронные разряды создают заметные потери.

Короны бывают прерывистыми с различными частотами: у положительных до 10 4 Гц, у отрицательных - 10 6 Гц - а это радиодиапазон помехи. Механизм прерывистости разряда у положительной короны, видимо, связан с тем, что электроны стримеров втягиваются в анод, положительные остовы экранируют анод, новые стримеры не могут создаваться, пока остовы не уйдут к катоду. Тогда анод «откроется» и картина повторится. Для отрицательной короны существенно наличие в воздухе кислорода - немного отойдя от короны электроны прилипают к кислороду, отрицательные ионы экранируют острие, и пока они не уйдут к аноду, разряд прекращается. После ухода ионов разряд возникнет вновь и картина повторится.

Рис. 8.9. Стример от положительного стержня диаметром 2 см на плоскость на расстоянии 150 см при постоянном напряжении 125 кВт; справа - расчет, проведены эквипотенциальные поверхности, цифры около кривых - доли от приложенного напряжения, отсчитанные от плоскости; слева - фотография стримеров в тех же условиях

Высокочастотные (вч) разряды

В ВЧ-диапазоне (10 -1  10 2 МГц) принято различать Е и Н типы разрядов - по определяющему вектору электромагнитного поля. В лазерной технике используют Е (емкостные) разряды, помещая рабочий объем в конденсатор, к пластинам которого подводят ВЧ-напряжение (пластины иногда прямо вводят в объем, иногда изолируют диэлектриком - обычно стеклом). Мощности этих разрядов небольшие (их задача поддержать ионизацию), но напряженности Е велики - до десятков кэВ.

Применение ВЧ индукционных полей -полей) уже с конца 40-х г. стало весьма широким, хотя, в основном, в виде ВЧ-печей. Везде, где нужно чистое тепло и есть проводящая среда, Н поля незаменимы. Это и производство полупроводниковых материалов, и зонная плавка чистых металлов, и сверхчистые химические соединения и даже бытовые печи.

Рис. 8.10. Индукционный разряд в трубке радиусом R , вставленной в длинный соленоид; r 0 - радиус плазмы, справа - распределение температуры по радиусу

Правда, в этих устройствах почти нет необходимости согласования генератора и нагрузки - соотношение реактивного и активного сопротивлений нагрузки меняется мало. А вот в разрядах дело сложнее: изменение параметров среды разряда (сопротивление, самоиндукция, взаимоиндукция - связь с индуктором) могут меняться в широких пределах. Обычно индуктор - катушка (бывает и один виток!), внутри которой и происходит разряд (рис. 8.10).

Переменное поле направлено вдоль оси катушки, поле аксиально к ней. Для поддержания разряда нужное существенно меньше, чем для его зажигания. Поэтому обычно вводят в объем тонкий металлический электрод, он разогревается, дает термоэлектроны (иногда частично испаряется), инициирует разряд, после чего его удаляют. Во время работы мощность вводится потоком электромагнитной энергии:

< S > = (с/4 )<ЕН >, (8.27)

а отводится чаще всего потоком газа (он ионизуется и уносит энергию). Но электромагнитная энергия проникает в плазму (проводник) на глубину х, спадая по экспоненте ехр(-х/), где  - так называемый скинслой, и его условились считать глубиной проникновения потока:

 2 = c 2 /(2) , (8.28)

где с - скорость света,  - проводимость проводника,  - частота ВЧ

Если  < R , то энергия поглощается, в слое толщиной δ, образуя проводящий цилиндр. Распределение по радиусу температуры Т и проводимости σ представлены на рис. 8.11, по существу, это полный аналог каналовой модели дуги, ее называют «моделью металлического цилиндра». Следует отметить, что реально можно управлять давлением р (желательно побольше!) и потоком <ЕН>, определяемым ампервитками:

<ЕН> ~ IN (где I - ток, N - число витков на единицу длины индуктора).

Возникновение стримеров в объеме между электродами не всегда приводит к искре, а может вызвать и разряд другого типа коронный разряд. На рисунке показана схема прибора, с помощью которого можно воспроизвести коронный разряд. В этом приборе тонкая проволока помещается по оси полого металлического цилиндра.

При напряжении между проволокой и цилиндром в пространстве между ними возникает неоднородное электрическое поле с максимальной напряженностью около проволоки. Когда напряженность поля вблизи проволоки приближается к пробивному значению напряженности воздуха (около U п =30 000 В/м) между проволокой и цилиндром зажигается коронный разряд и в цепи пойдет ток, т.е. вокруг проволоки возникает свечение –корона. Внешний вид короны при отрицательном потенциале проволоки (отрицательная корона) несколько отличается от положительной короны.

При отрицательном потенциале проволоки электронные лавины начинаются у проволоки, распространяются к аноду и на некотором расстоянии стримеры обрываются вследствие уменьшения напряженности поля. В случае положительной короны электронные лавины зарождаются на внешней границе (поверхности) короны и движутся по направлению к проволоке. В отличие от искрового разряда в коронном разряде имеет место неполный пробой газового промежутка, так как в нем электронные лавины не проникают через весь слой газа E = .

Внутри корон имеются и положительные, и отрицательные ионы. За пределами короны будут ионы только одного знака: отрицательные при отрицательной короне; положительные ионы при положительной короне.

Коронный разряд может возникнуть не только у проволоки, но и у острия и вообще у всех электродов, возле которых образуется очень сильное неоднородное поле. Коронный разряд сопровождается шипящим звуком и легким потрескиванием. Коронный разряд возникает на высоковольтных линиях электропередачи и вызывает утечки электронных зарядов, т.е. электроэнергии.

Применение коронного разряда.

1. Электрическая очистка газов (электрофильтры). Известен такой опыт – сосуд, наполненный дымом, моментально делается совершенно прозрачным, если внести в него острые металлические электроды, находящиеся под высоким напряжением.

Этот эффект используется для очистки газов. Содержащиеся твердые и жидкие частицы в газе в коронном разряде взаимодействуют с ионами и становятся заряженными частицами (ионы «прилипают» к частицам пыли) и далее направляются к электродам и осаждаются. Кроме того, такие электрофильтры позволяют извлечь из газов многие тонны ценных продуктов в производстве серной кислоты и цветных металлов в линейном производстве.

2.Счетчики электронных частиц.

Напряжение U выбирают таким, чтобы оно было несколько меньше «критического», т.е. необходимого для зажигания коронного разряда внутри счетчика. При попадании в счетчик быстро движущегося электрона он ионизует молекулы газа внутри объема, отчего напряжение зажигания короны понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный импульс тока. Для регистрации сигнала используется чувствительный электрометр Е, каждый раз при попадании частицы (даже одного электрона) в объем счетчика листочки электрометра дают отброс.

§7. Классификация электрических разрядов .

Электрические разряды в газах протекают по-разному, т.е. в разряде реализуется те или иные фундаментальные (элементарные) процессы, которые являются для данного вида разряда и определяют его форму; его характерные особенности.

Как мы уже знаем, имеется ограниченное число элементарных процессов, которые могут реализоваться в объеме газового разряда, еще раз перечислим эти процессы:

1) Столкновения частиц газа результат: обмен энергиями, импульсом, возбуждение атомов, ионизация.

2) Присоединение электронов результат: возникает отрицательный ион, уменьшается концентрации электронов.

3) Рекомбинация результат: рождается излучение (фотон).

4) Получение и испускание излучения в объеме разряда.

5) Диффузия заряженных частиц.

6) Электродные эффекты: термоэлектронная эмиссия; внешний фотоэффект, эмиссия при электронном ударе, эмиссия при ударе положительных ионов: эмиссия при ударе нейтральных атомов; автоэлектронная эмиссия.

Одновременно все эти элементарные – фундаментальные процессы в разрядах не реализуются. В зависимости от условий реализуются только некоторые процессы, и этот набор элементарных процессов определяет основные свойства разряда, т.е. данный вид разряда отличается от другого набором элементарных процессов. Сам этот набор или вид разряда определяется следующими параметрами системы: величиной тока напряжением между электродами; давлением газа, геометрией разрядной камеры, материалом электродов и состоянием их поверхности, температурой электродов и др.

Вид разряда в основном определяется напряжением на электродах, величиной тока разряда и давлением в разрядной камере. При этом напряжение и ток является независимым параметрами системы.

Таким образом, зависимость напряжения от тока становится наиболее важной интегральной характеристикой электрического разряда U = f(I) еще называется вольт-амперной характеристикой разряда. Она формируется в зависимости от внутренних процессов, следовательно, по ней можно определить вид разряда.

Итак, рассмотрим, как один вид разряда переходим в другой вид с помощью вольт-амперной характеристики.

Участок ОВ − несамостоятельный темный разряд, образование носителей тока происходит лишь за счет внешнего ионизатора, на участке ОА реализуется рекомбинация, на АВ − все заряды достигают электродов, рекомбинацией зарядов можно пренебречь.

За точкой В начинается ионизация нейтральных частиц электронным ударом, возникают лавины электронов и ионов. Однако если убрать внешний ионизатор, разряд прекращается. Это несамостоятельный таунсендовский разряд − это участок ВС.

На участок СD заметную роль играют вторичные электроны, выбиваемые из катода положительными ионами, световыми квантами, возбужденными молекулами. Необходимость в поддержании ионизации за счет энергии внешних источников отпадает − разряд становится самостоятельным, его еще называют самостоятельным таунсендовским разрядом (это участок СЕ).

На участке EF таунсендовский разряд переходит в нормальный тлеющий разряд, которому соответствует участок FH. На участок НК с ростом повышается и напряжение. Разряд, соответствующий участку НК называется аномальном тлеющим разрядом.

Далее с ростом тока увеличивается температура катода, усиливается роль термоэлектронной эмиссии, разряд контрагируется и образуется дуговой разряд. Дуговой разряд поддерживается за счет термоэлектронной эмиссии с катода.

Стационарный тлеющий разряд при низком давлении.

С ростом тока самостоятельный таунселовский разряд (участок СЕF) может развивается по-разному и иметь несколько форм. Если при давлении около 1 мм. рт. ст. разряд происходит между электродами, подключенными к источнику постоянного тока, то реализуется нормальный разряд.

Участок FH вольт-амперной характеристики соответствует тлеющему разряду. Отличительным признаком тлеющего разряда является своеобразное распределение потенциала вдоль длины межэлектродного промежутка. Распределение потенциала приводит к тому, что тлеющий разряд имеет характерный неоднородный вид, следовательно, и неоднородную структуру, разряд кажется как бы разделенным на части. Тлеющий разряд состоит из прикатодной области, и положительного столба.

Рассмотрим различные части разряда. Начиная от катода к аноду.

Катодная область разряда.

Электроны, необходимые для поддержания разряда, в основном эмитируется при бомбардировке катода положительными ионами. Вторичные электроны выходят, из катода имея, малые скорости, вследствие этого они (вблизи поверхности образуют отрицательный пространственный заряд) еще не имеют достаточные энергии для возбуждения молекул газа, поэтому молекулы не излучают, и непосредственно у поверхности катода образуется темное пространственно, заполненное медленными электронами. Этот очень тонкий несветящийся слой газа называется - темное пространство Астона. Ток в этой области в основном создается положительными ионами.

Далее электрона ускоряются полем, кинетическая энергия электронов становится достаточной для возбуждения молекул газа и это служит причиной возникновения тонкого светящего слоя газа, называемого первым катодным свечением. В этой области электроны при столкновениях частичного или полностью теряют скорость. Поэтому за первым катодным свечением образуется следующее темное катодное пространство. В этой области происходит слабая рекомбинация электронов с положительными ионами, поэтому здесь происходит очень слабое излучение. В темном катодном пространстве электроны сильно разгоняются до скоростей, при которых они интенсивно ионизуют молекул газа, а следовательно, и размножаются.

В конце второго темного катодного пространства число электронов уже настолько велико, что ток почти полностью переносится электронами, и они заметно уменьшают положительный пространственный заряд, даже образуют область отрицательного пространственного заряда. В этой области прекращается дальнейшее ускорение электронов, а энергия накопленная в области второго катодного темного пространства расходуется в основном на интенсивное возбуждение и ионизации молекул. Это происходит в области второго катодного свечения (отрицательное катодное свечение). В результате энергия электронов уменьшается, постепенно в интенсивность возбуждения и ионизации также уменьшается, следовательно, падает число электронов (и за счет рекомбинации и диффузии), настолько, что отрицательный пространственный заряд обращается в ноль. Соответственно изменяется напряженность электрического поля и в точке исчезновения отрицательного заряда Е принимает постоянное значение (около 1 В/см) и не меняется до прианодной области заряда. В этом месте начинается положительный столб тлеющего разряда.

Пространство, занимаемое темным пространством Астона первым катодным свечением и вторым темным пространством, называется областью катодного падения потенциала. Как видно из рисунка, падение потенциала между электродами почти полностью реализуется на незначительном участке у катода. Длина этого участка изменяется обратно пропорционального давления газа. При P = 1 мм рт.ст. dc составляет около 10 мм, а U=100-250 В.

В нормальном тлеющем разряде плотностью тока при увеличение или уменьшение тока разряда остается постоянной. Но зависит от давления Р и изменяется по закону P 2 . Например, при P = 1 мм рт.cт. плотность в среднем j = 0,1 мА/см 2 = 1·10 4 А/см 2 . Но j зависит еще от природы газа и от материала катода. Из I=jS следует, что при малом токе часть площади принимает участие в разряде.

В этих условиях остается постоянным и катодное падение потенциала U k . Для диапазона давлений от 1-10 мм рт.cт. значение U k не зависит от давления и однозначно определяется природой газа и материала катода. Примеры

С ростом тока разряда наступает момент, когда вся площадь катода принимает участие в разряде, с этого момента с дальнейшим ростом тока начинается увеличение катодного падения потенциала. Напряженность поля Е возрастает до тех пор, пока не обеспечивается необходимая ионизация для поддержания роста тока. В этих условиях нормальный тлеющий разряд переходит в аномальный тлеющий разряд.

где, k − константа, зависящая от вида газа и материала катода.

Положительный столб.

Положительный столб состоит из плазмы, а плазма является нейтральной электропроводящей средой. Поэтому положительный столб тлеющего выполняет роль обыкновенного проводника, соединяющего прикатодную область с прианодной частью разряда. В отличие от остальных частей тлеющего разряда, которые имеют конкретные размеры, и структуру, зависящие от вида газа, его давления и плотности разрядного тока, длина положительного столба определяется размерами разрядной камеры, а по структуре столб представляет собой ионизированный газ (n e ≈ n i ), т.е. он может иметь любую длину. Напряженность поля порядка 1 В/см, с ростом давления имеет тенденцию возрастать. Напряженность изменяется также при изменении радиуса камеры (трубки) − сжатие разряда увеличивает поле: Е всегда принимает значение, как раз достаточное для поддержания в столбе той степени ионизации, которая нужна для стационарного горения разряда. Энергия в столбе достаточна для ионизации. И процесс ионизации компенсирует убыль электронов и ионов за счет рекомбинации и диффузии с последующей нейтрализация на электродах и на стенках камеры свечение положительного столба связано всеми этими процессами. В отличие от других частей, положительном столбе тлеющего разряда хаотическое движение заряженных частиц преобладает над направленным.

Анодная область.

Анод притягивает электроны из положительного столба и около места привязки образуется отрицательный пространственный заряд и рост напряженности поля, в результате этого происходит перенос тока разряда к поверхности анода. Область анодного падения является пассивной частью разряда. Анод не эмитирует зарядов. Тлеющий разряд может существовать без анодной области, так же без положительного столба. Положительный столб разряда не зависит от приэлектродных процессов. Отличием катодных частей является преобладающе направленное движение электронов и ионов.

Применение тлеющего разряда.

Тлеющий разряд в разряженных газах находит разнообразное применение в газонаполненных выпрямителях, преобразователях, индикаторах, стабилизаторах напряжения, газосветных лампах дневного света. Например, в неоновых лампах (для целей сигнализации) тлеющий разряд используется в неоне, электроды покрывают слоем бария и они имеют катодное падение потенциала порядка 70 В и зажигаются при включении в осветительную сеть.

В лампах дневного света тлеющий разряд происходит в парах ртути. Излучение ртутного пара поглощается слоем люминофора, которым покрыта внутренняя поверхность газосветной трубки.

Тлеющий разряд используется также для катодного распыления металлов. Поверхность катода при тлеющем разряде вследствие бомбардировки положительными ионами газа сильно нагревается в отдельных малых участках и поэтому постепенно переходит в парообразное состояние. Помещая предметы вблизи катода разряда, их можно покрыть равномерным слоем металла.

В последние годы тлеющий разряд находит применение в плазмохимии и лазерной технике. В них тлеющий разряд используется в аномальном режиме при повышенном давлении.

1. p = 6,7 кПа ≈ 50 мм. рт. ст.

v = 15,7 м/c

2. p = 8 кПа ≈ 60 мм. рт. ст.

v = 21м/c

Типичные вольт - амперные характеристики тлеющего разряда в поперечном потоке воздуха.

1 мм. рт. ст. = 133 Па. 1кПа=1000/133 = 8мм.рт.ст.

Искровой разряд возникает в тех случаях, когда напряженность электрического поля достигает пробивного для данного газа значения Значение зависит от давления газа; для воздуха при атмосферном давлении оно составляет около . С увеличением давления возрастает. Согласно экспериментальному закону Пашена отношение пробивной напряженности поля к давлению приблизительно постоянно:

Искровой разряд сопровождается образованием ярко светящегося извилистого, разветвленного канала, по которому проходит кратковременный импульс тока большой силы. Примером можт служить молния; длина ее бывает до 10 км, диаметр канала - до 40 см, сила тока может достигать 100 000 и более ампер, продолжительность импульса составляет около .

Каждая молния состоит из нескольких (до 50) импульсов, следующих по одному и тому же каналу; их общая длительность (вместе с промежутками между импульсами) может достигать нескольких секунд. Температура газа в искровом канале бывает до 10000 К. Быстрый сильный нагрев газа приводит к резкому повышению давления и возникновению ударных и звуковых волн. Поэтому искровой разряд сопровождается звуковыми явлениями - от слабого треска при искре малой мощности до раскатов грома, сопровождающих молнию.

Возникновению искры предшествует образование в газе сильно ионизированного канала, получившего название стримера. Этот канал получается путем перекрытия отдельных электронных лавин, возникающих на пути искры. Родоначальником каждой лавины служит электрон, образующийся путем фотоионизации. Схема развития стримера показана на рис. 87.1. Пусть напряженность поля такова, что электрон, вылетевший за счет какого-либо процесса из катода, приобретает на длине свободного пробега энергию, достаточную для ионизации.

Поэтому происходит размножение электронов - возникает лавина (образующиеся при этом положительные ионы не играют существенной роли вследствие гораздо меньшей подвижности; они лишь обусловливают пространственный заряд, вызывающий перераспределение потенциала). Коротковолновое излучение, испускаемое атомом, у которого при ионизации был вырван один из внутренних электронов (это излучение показано на схеме волнистыми линиями), вызывает фотоионизацию молекул, причем образовавшиеся электроны порождают все новые лавины. После перекрывания лавин образуется хорошо проводящий канал - стример, по которому устремляется от катода к аноду мощный поток электронов - происходит пробой.

Если электроды имеют форму, при которой поле в межэлектродном пространстве приблизительно однородно (например, представляет собой шары достаточно большого диаметра), то пробой возникает при вполне определенном напряжении значение которого зависит от расстояния между шарами . На этом основан искровой вольтметр, с помощью которого измеряют высокое напряжение . При измерениях определяется наибольшее расстояние при котором возникает искра. Умножив затем на получают значение измеряемого напряжения.

Если один из электродов (или оба) имеет очень большую кривизну (например, электродом служит тонкая проволока или острие) то при не слишком большом напряжении возникает так называемый коронный разряд. При увеличении напряжения этот разряд переходит в искровой или дуговой.

При коронном разряде ионизация и возбуждение молекул происходят не во всем межэлектродном пространстве, а лишь вблизи электрода с малым радиусом кривизны, где напряженность ноля достигает значений, равных или превышающих . В этой части разряда газ светится. Свечение имеет вид короны, окружающей электрод, чем и вызвано название этого вида разряда. Коронный разряд с острия имеет вид светящейся кисти, в связи с чем его иногда называют кистевым разрядом. В зависимости от знака коронирующего электрода говорят о положительной или отрицательной коронах. Между коронирующим слоем и некоронирующим электродом расположена внешняя область короны. Режим пробоя существует только в пределах коронирующего слоя. Поэтому можно сказать, что коронный разряд представляет собой неполный пробой газового промежутка.

В случае отрицательной короны явления на катоде сходны с явлениями на катоде тлеющего разряда. Ускоренные полем положительные ионы выбивают из катода электроны, которые вызывают ионизацию и возбуждение молекул в коронирующем слое. Во внешней области короны поле недостаточно для того, чтобы сообщить электронам энергию, необходимую для ионизации или возбуждения молекул.

Поэтому проникшие в эту область электроны дрейфуют под действием ноля к аноду. Часть электронов захватывается молекулами, вследствие чего образуются отрицательные ионы. Таким образом, ток во внешней области обусловливается только отрицательными носителями - электронами и отрицательными ионами. В этой области разряд имеет несамостоятельный характер.

В положительной короне электронные лавины зарождаются у внешней границы короны и устремляются к коронирующему электроду - аноду. Возникновение электронов, порождающих лавины, обусловлено фотоионизацией, вызванной излучением коронирующего слоя. Носителями тока во внешней области короны служат положительные ионы, которые дрейфуют под действием поля к катоду.

Если оба электрода имеют большую кривизну (два коронирующих электрода), вблизи каждого из них протекают процессы, присущие коронирующему электроду данного знака. Оба коронирующих слоя разделяются внешней областью, в которой движутся встречные потоки положительных и отрицательных носителей тока. Такая корона называется двуполярной.

Упоминавшийся в § 82 при рассмотрении счетчиков самостоятельный газовый разряд представляет собой коронный разряд.

Толщина коронирующего слоя и сила разрядного тока растут с увеличением напряжения. При небольшом напряжении размеры короны малы и ее свечение незаметно. Такая микроскопическая корона возникает вблизи острия, с которого стекает электрический ветер (см. § 24).

Корона, появляющаяся под действием атмосферного электричества на верхушках корабельных мачт, деревьев и т. п., получила в старину название огней святого Эльма.

В высоковольтных устройствах, в частности в линиях высоковольтных передач, коронный разряд приводит к вредным утечкам тока. Поэтому приходится принимать меры для его предотвращения. С этой целью, например, провода высоковольтных линий берут достаточно большого диаметра, тем большего, чем выше напряжение линии.

Полезное применение в технике коронный разряд нашел в электрофильтрах. Очищаемый газ движется в трубе, по оси которой расположен отрицательный коронирующий электрод. Отрицательные ионы, имеющиеся в большом количестве во внешней области короны, оседают на загрязняющих газ частицах или капельках и увлекаются вместе с ними к внешнему некоронирующему электроду. Достигнув этого электрода, частицы нейтрализуются и оседают на нем. Впоследствии при ударах по трубе осадок, образованный уловленными частицами, осыпается в сборник.

Разряд, получивший такое название, наблюдается при сравнительно высоких давлениях газов (например, при атмосферном давлении) в сильно неоднородном поле вблизи электродов с большой кривизной поверхности (например, около остриев или проводов линий высокого напряжения). Для получения значительной неоднородности поля электроды должны иметь очень неодинаковую поверхность, то есть один электрод - очень большую поверхность, а другой - очень малую. Так, например, коронный разряд легко получить, располагая тонкую проволоку внутри металлического цилиндра, радиус которого значительно больше радиуса проволоки (рис. 3.3.1); следует отметить, что наличие внешнего цилиндра не обязательно и его роль могут играть окружающие заземленные предметы.

Силовые линии электрического поля сгущаются по мере приближения к проволоке, а следовательно, напряженность поля возле проволоки имеет наибольшее значение. Когда она достигает приблизительно 3*10 6 В/м (при атмосферном давлении и нормальной температуре), между проволокой и цилиндром зажигается разряд и в цепи появляется ток. При этом возле проволоки возникает свечение, имеющее вид оболочки или короны, окружающей проволоку, откуда и произошло название разряда. Коронный разряд возникает как при отрицательном потенциале на проволоке (отрицательная корона), так и при положительном (положительная корона), а также при переменном напряжении между проволокой и цилиндром. При увеличении напряжения между проволокой и цилиндром растет и ток в коронном разряде. При этом увеличивается толщина светящегося слоя короны.

Процессы внутри короны сводятся к следующему. Если проволока заряжена отрицательно, то по достижении напряженности пробоя у поверхности проволоки зарождаются электронные лавины, которые распространяются от проволоки к цилиндру. Так как напряженность поля уменьшается по мере удаления от проволоки, то на некотором расстоянии от проволоки электронные лавины обрываются. Расстояние, на которое распространяются электронные лавины, и есть толщина короны. Следовательно, в коронно разряде электронные лавины не пронизывают целиком слой газа, т. е. мы имеем неполный пробой газового промежутка. В случае отрицательной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит за счёт эмиссии их из катода под действием положительных ионов. В случае положительной короны электронные лавины зарождаются на внешней поверхности короны и движутся по направлению к проволоке. В случае положительной короны рождение электронов, вызывающих ударную ионизацию молекул газа, происходит вследствие ионизации газа вблизи анода.

Таким образом, внутри короны мы имеем и положительные и отрицательные ионы. Отрицательные ионы (при отрицательной короне) движутся к аноду и выходят за пределы короны. Положительные ионы движутся к проволоке. Электроны, вышедшие за пределы короны, присоединяются к нейтральным атомам газа, отчего возникают отрицательные ионы. За пределами короны мы имеем только ионы одного знака (отрицательные при отрицательной короне и положительные при положительной короне). В этой области разряд имеет несамостоятельный характер.

Коронный разряд может возникнуть не только возле проволок, но и возле любых проводников с малой поверхностью, каковыми являются всякого рода заострения. Свойства острий объясняются зажиганием возле них микроскопической короны. Корона возникает также в природе под влиянием атмосферного электрического поля и появляется на верхушках деревьев, корабельных мачт (см. приложение 1.4) и т.п.

С возможностью возникновения коронного разряда приходится всегда считаться в технике высоких напряжений. При зажигании короны возле проводов высоковольтных линий электропередачи окружающий воздух сильно ионизуется и появляются вредные токи утечки. Чтобы коронный разряд не мог возникнуть, провода высоковольтных линий должны иметь достаточно большой диаметр, тем больший, чем выше напряжение линий. По этой же причине и в лабораторной практике все подводки высокого напряжения (к рентгеновским установкам и другим высоковольтным устройствам) осуществляются обычно с помощью труб достаточно большого диаметра. Применение коронного разряда:

Электрическая очистка газов (электрофильтры). Сосуд, наполненный дымом, внезапно делается совершенно прозрачным, если внести в него острые металлические электроды, соединенные с электрической машиной, а все твердые и жидкие частицы будут осаждаться на электродах. Объяснение опыта заключается в следующем: как только и проволоки зажигается корона, воздух внутри трубки сильно ионизируется. Газовые ионы прилипают к частицам пыли и заряжают их. Так как внутри трубки действует сильное электрическое поле, заряженные частицы пыли движутся под действием поля к электродам, где и оседают.

Счетчики элементарных частиц. Счетчик элементарных частиц Гейгера - Мюллера состоит из небольшого металлического цилиндра, снабженного окошком, закрытым фольгой, и тонкой металлической проволоки, натянутой по оси цилиндра и изолированной от него (рис. 3.3.2).

Счетчик включают в цепь, содержащую источник тока, напряжение которого равно нескольким тысячам вольт. Напряжение выбирают необходимым для появления коронного разряда внутри счетчика.

При попадании в счетчик быстро движущегося электрона последний ионизирует молекулы газа внутри счетчика, отчего напряжение, необходимое для зажигания короны, несколько понижается. В счетчике возникает разряд, а в цепи появляется слабый кратковременный ток. Чтобы обнаружить его, в цепь вводят очень большое сопротивление (несколько мегаом) и подключают параллельно с ним чувствительный электрометр. При каждом попадании быстрого электрона внутрь счетчика листка электрометра будут откланяться.

Подобные счетчики позволяют регистрировать не только быстрые электроны, но и вообще любые заряженные, быстро движущиеся частицы, способные производить ионизацию путем соударений. Современные счетчики легко обнаруживают попадание в них даже одной частицы и позволяют, поэтому с полной достоверностью и очень большой наглядностью убедиться, что в природе действительно существуют элементарные заряженные частицы.

- Громоотвод. Подсчитано, что в атмосфере всего земного шара происходит одновременно около 1800 гроз, которые дают в среднем около 100 молний в секунду. И хотя вероятность поражения молнией какого-либо отдельного человека ничтожно мала, тем не менее молнии причиняют немало вреда. Достаточно указать, что в настоящее время около половины всех аварий в крупных линиях электропередачи вызывается молниями. Поэтому, защита от молнии представляет собой важную задачу.

Ломоносов и Франклин не только объяснили электрическую природу молнии, но и указали, как можно построить громоотвод, защищающий от удара молнии. Громоотвод представляет собой длинную проволоку, верхний конец которой заостряется и укрепляется выше самой высокой точки защищаемого здания. Нижний конец проволоки соединяют с металлическим листом, а лист закапывают в Землю на уровне почвенных вод. Во время грозы на Земле появляются большие индуцированные заряды, и у поверхности Земли появляется большое электрическое поле. Напряженность его очень велика около острых проводников, и поэтому на конце громоотвода зажигается коронный разряд. Вследствие этого индуцированные заряды не могут накапливаться на здании и молнии не происходит. В тех же случаях, когда молния все же возникает (а такие случаи очень редки), она ударяет в громоотвод и заряды уходят в Землю, не причиняя вреда зданию.

В некоторых случаях коронный разряд с громоотвода бывает настолько сильным, что у острия возникает явно видимое свечение. Такое свечение иногда появляется и возле других заостренных предметов, например, на концах корабельных мачт, острых верхушек деревьев, и т.д. Это явление было замечено еще несколько веков тому назад и вызывало суеверный ужас мореплавателей, не понимавших истинной его сущности.