Название проекций точки. Проекции точки на три плоскости проекций

Для построения изображений ряда деталей необходимо уметь находить проекции отдельных точек. Например, трудно вычертить вид сверху детали, приведенной на рис. 139, не строя горизонтальных проекций точек А, В, С, D, Е, F и др.

Задача нахождения проекций точек по одной, заданной на поверхности предмета, решается следующим образом. Сначала находят проекции поверхности, на которой расположена точка. Затем, проведя линию связи к проекции, где поверхность изображается линией, находят вторую проекцию точки. Третья проекция лежит на пересечении линий связи.

Рассмотрим пример.

Даны три проекции детали (рис. 140, а). Задана горизонтальная проекция а точки А, лежащей на видимой поверхности. Нужно найти остальные проекции этой точки.

Прежде всего надо провести вспомогательную прямую. Если даны два вида, то место вспомогательной прямой на чертеже выбирают произвольно, правее вида сверху, так чтобы вид слева оказался на нужном расстоянии от главного вида (рис. 141).

Если три вида уже построены (рис. 142, а), то место вспомогательной прямой произвольно выбирать нельзя; нужно найти точку, через которую она пройдет. Для этого достаточно продолжить до взаимного пересечения горизонтальную и профильную проекции оси симметрии и через полученную точку k (рис. 142, б) провести под углом 45° отрезок прямой, который и будет вспомогательной прямой.

Если осей симметрии нет, то продолжают до пересечения в точке k 1 горизонтальную и профильную проекции любой грани, проецирующейся в виде отрезков прямой (рис. 142, б).

Проведя вспомогательную прямую, приступают к построению проекций точки (см. рис. 140, б).

Фронтальная а" и профильная а" проекции точки А должны располагаться на соответствующих проекциях поверхности, которой принадлежит точка А. Находят эти проекции. На рис. 140, б они выделены цветом. Проводят линии связи, как указано стрелками. В местах пересечения линий связи с проекциями поверхности находятся искомые проекции а" и а".

Построение проекций точек В, С, D показано на рис. 140, в линиями связи со стрелками. Заданные проекции точек цветные. Линии связи проводят к той проекции, на которой поверхность изображается в виде линии, а не в виде фигуры. Поэтому сначала находят фронтальную проекцию с" точки С. Профильная проекция с точки С определяется пересечением линий связи.

Если поверхность ни на одной проекции не изображается линией, то для построения проекций точек надо применять вспомогательную плоскость. Например, дана фронтальная проекция d точки А, лежащей на поверхности конуса (рис. 143, а). Через точку параллельно основанию проводят вспомогательную плоскость, которая пересечет конус по окружности; ее фронтальная проекция - отрезок прямой, а горизонтальная - окружность диаметром, равным длине этого отрезка (рис. 143, б). Проведя к этой окружности из точки а" линию связи, получают горизонтальную проекцию а точки А.

Профильную проекцию а" точки А находят обычным способом на пересечении линий связи.

Таким же приемом можно найти проекции точки, лежащей, например, на поверхности пирамиды или шара. При пересечении пирамиды плоскостью, параллельной основанию и проходящей через заданную точку, образуется фигура, подобная основанию. На проекциях этой фигуры лежат проекции заданной точки.

Ответьте на вопросы


1. Под каким углом проводят вспомогательную прямую?

2. Где проводят вспомогательную прямую, если заданы виды спереди и сверху, а надо построить вид слева?

3. Как определить место вспомогательной прямой при наличии трех видов?

4. В чем заключается способ построения проекций точки по одной заданной, если одна из поверхностей предмета изображается линией?

5. Для каких геометрических тел и в каких случаях проекции точки, заданной на их поверхности, находят, пользуясь вспомогательной плоскостью?

Задания к § 20

Упражнение 68


Запишите в рабочей тетради, каким проекциям точек, обозначенных на видах цифрами, соответствуют точки, обозначенные на наглядном изображении буквами в примере, указанном Вам преподавателем (рис. 144, а-г).

Упражнение 69


На рис. 145, а-б буквами обозначено лишь по одной проекции некоторых из вершин. Найдите в примере, указанном Вам преподавателем, остальные проекции этих вершин и обозначьте их буквами. Постройте в одном из примеров недостающие проекции точек, заданных на ребрах предмета (рис. 145, г и д). Выделите цветом проекции ребер, на" которых находятся точки. Задание выполните на прозрачной бумаге, наложив ее на страницу учебника. Перечерчивать рис. 145 не надо.

Упражнение 70


Найдите недостающие проекции точек, заданных одной проекцией на видимых поверхностях предмета (рис. 146). Обозначьте их буквами. Заданные проекции точек выделите цветом. Решить задание Вам поможет наглядное изображение. Задание можно выполнить как в рабочей тетради, так и на прозрачной бумаге, наложив ее на страницу учебника. В последнем случае перечерчивать рис. 146 не надо.

Упражнение 71


В примере, указанном Вам преподавателем, перечертите три вида (рис. 147). Постройте недостающие проекции точек, заданных на видимых поверхностях предмета. Заданные проекции точек выделите цветом. Обозначьте буквами все проекции точек. Для построения проекций точек воспользуйтесь вспомогательной прямой. Выполните технический рисунок и нанесите на нем заданные точки.

В этой статье мы найдем ответы на вопросы о том, как создать проекцию точки на плоскость и как определить координаты этой проекции. Опираться в теоретической части будем на понятие проецирования. Дадим определения терминам, сопроводим информацию иллюстрациями. Закрепим полученные знания при решении примеров.

Yandex.RTB R-A-339285-1

Проецирование, виды проецирования

Для удобства рассмотрения пространственных фигур используют чертежи с изображением этих фигур.

Определение 1

Проекция фигуры на плоскость – чертеж пространственной фигуры.

Очевидно, что для построения проекции существует ряд используемых правил.

Определение 2

Проецирование – процесс построения чертежа пространственной фигуры на плоскости с использованием правил построения.

Плоскость проекции - это плоскость, в которой строится изображение.

Использование тех или иных правил определяет тип проецирования: центральное или параллельное .

Частным случаем параллельного проецирования является перпендикулярное проецирование или ортогональное: в геометрии в основном используют именно его. По этой причине в речи само прилагательное «перпендикулярное» часто опускают: в геометрии говорят просто «проекция фигуры» и подразумевают под этим построение проекции методом перпендикулярного проецирования. В частных случаях, конечно, может быть оговорено иное.

Отметим тот факт, что проекция фигуры на плоскость по сути есть проекция всех точек этой фигуры. Поэтому, чтобы иметь возможность изучать пространственную фигуру на чертеже, необходимо получить базовый навык проецировать точку на плоскость. О чем и будем говорить ниже.

Напомним, что чаще всего в геометрии, говоря о проекции на плоскость, имеют в виду применение перпендикулярной проекции.

Произведем построения, которые дадут нам возможность получить определение проекции точки на плоскость.

Допустим, задано трехмерное пространство, а в нем - плоскость α и точка М 1 , не принадлежащая плоскости α . Начертим через заданную точку М 1 прямую а перпендикулярно заданной плоскости α . Точку пересечения прямой a и плоскости α обозначим как H 1 , она по построению будет служить основанием перпендикуляра, опущенного из точки М 1 на плоскость α .

В случае, если задана точка М 2 , принадлежащая заданной плоскости α , то М 2 будет служить проекцией самой себя на плоскость α .

Определение 3

– это либо сама точка (если она принадлежит заданной плоскости), либо основание перпендикуляра, опущенного из заданной точки на заданную плоскость.

Нахождение координат проекции точки на плоскость, примеры

Пускай в трехмерном пространстве заданы: прямоугольная система координат O x y z , плоскость α , точка М 1 (x 1 , y 1 , z 1) . Необходимо найти координаты проекции точки М 1 на заданную плоскость.

Решение очевидным образом следует из данного выше определения проекции точки на плоскость.

Обозначим проекцию точки М 1 на плоскость α как Н 1 . Согласно определению, H 1 является точкой пересечения данной плоскости α и прямой a , проведенной через точку М 1 (перпендикулярной плоскости). Т.е. необходимые нам координаты проекции точки М 1 – это координаты точки пересечения прямой a и плоскости α .

Таким образом, для нахождения координат проекции точки на плоскость необходимо:

Получить уравнение плоскости α (в случае, если оно не задано). Здесь вам поможет статья о видах уравнений плоскости;

Определить уравнение прямой a , проходящей через точку М 1 и перпендикулярной плоскости α (изучите тему об уравнении прямой, проходящей через заданную точку перпендикулярно к заданной плоскости);

Найти координаты точки пересечения прямой a и плоскости α (статья – нахождение координат точки пересечения плоскости и прямой). Полученные данные и будут являться нужными нам координатами проекции точки М 1 на плоскость α .

Рассмотрим теорию на практических примерах.

Пример 1

Определите координаты проекции точки М 1 (- 2 , 4 , 4) на плоскость 2 х – 3 y + z - 2 = 0 .

Решение

Как мы видим, уравнение плоскости нам задано, т.е. составлять его необходимости нет.

Запишем канонические уравнения прямой a , проходящей через точку М 1 и перпендикулярной заданной плоскости. В этих целях определим координаты направляющего вектора прямой a . Поскольку прямая а перпендикулярна заданной плоскости, то направляющий вектор прямой a – это нормальный вектор плоскости 2 х – 3 y + z - 2 = 0 . Таким образом, a → = (2 , - 3 , 1) – направляющий вектор прямой a .

Теперь составим канонические уравнения прямой в пространстве, проходящей через точку М 1 (- 2 , 4 , 4) и имеющей направляющий вектор a → = (2 , - 3 , 1) :

x + 2 2 = y - 4 - 3 = z - 4 1

Для нахождения искомых координат следующим шагом определим координаты точки пересечения прямой x + 2 2 = y - 4 - 3 = z - 4 1 и плоскости 2 х - 3 y + z - 2 = 0 . В этих целях переходим от канонических уравнений к уравнениям двух пересекающихся плоскостей:

x + 2 2 = y - 4 - 3 = z - 4 1 ⇔ - 3 · (x + 2) = 2 · (y - 4) 1 · (x + 2) = 2 · (z - 4) 1 · (y - 4) = - 3 · (z + 4) ⇔ 3 x + 2 y - 2 = 0 x - 2 z + 10 = 0

Составим систему уравнений:

3 x + 2 y - 2 = 0 x - 2 z + 10 = 0 2 x - 3 y + z - 2 = 0 ⇔ 3 x + 2 y = 2 x - 2 z = - 10 2 x - 3 y + z = 2

И решим ее, используя метод Крамера:

∆ = 3 2 0 1 0 - 2 2 - 3 1 = - 28 ∆ x = 2 2 0 - 10 0 - 2 2 - 3 1 = 0 ⇒ x = ∆ x ∆ = 0 - 28 = 0 ∆ y = 3 2 0 1 - 10 - 2 2 2 1 = - 28 ⇒ y = ∆ y ∆ = - 28 - 28 = 1 ∆ z = 3 2 2 1 0 - 10 2 - 3 2 = - 140 ⇒ z = ∆ z ∆ = - 140 - 28 = 5

Таким образом, искомые координаты заданной точки М 1 на заданную плоскость α будут: (0 , 1 , 5) .

Ответ: (0 , 1 , 5) .

Пример 2

В прямоугольной системе координат O x y z трехмерного пространства даны точки А (0 , 0 , 2) ; В (2 , - 1 , 0) ; С (4 , 1 , 1) и М 1 (-1, -2, 5). Необходимо найти координаты проекции М 1 на плоскость А В С

Решение

В первую очередь запишем уравнение плоскости, проходящей через три заданные точки:

x - 0 y - 0 z - 0 2 - 0 - 1 - 0 0 - 2 4 - 0 1 - 0 1 - 2 = 0 ⇔ x y z - 2 2 - 1 - 2 4 1 - 1 = 0 ⇔ ⇔ 3 x - 6 y + 6 z - 12 = 0 ⇔ x - 2 y + 2 z - 4 = 0

Запишем параметрические уравнения прямой a , которая будет проходить через точку М 1 перпендикулярно плоскости А В С. Плоскость х – 2 y + 2 z – 4 = 0 имеет нормальный вектор с координатами (1 , - 2 , 2) , т.е. вектор a → = (1 , - 2 , 2) – направляющий вектор прямой a .

Теперь, имея координаты точки прямой М 1 и координаты направляющего вектора этой прямой, запишем параметрические уравнения прямой в пространстве:

Затем определим координаты точки пересечения плоскости х – 2 y + 2 z – 4 = 0 и прямой

x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ

Для этого в уравнение плоскости подставим:

x = - 1 + λ , y = - 2 - 2 · λ , z = 5 + 2 · λ

Теперь по параметрическим уравнениям x = - 1 + λ y = - 2 - 2 · λ z = 5 + 2 · λ найдем значения переменных x , y и z при λ = - 1: x = - 1 + (- 1) y = - 2 - 2 · (- 1) z = 5 + 2 · (- 1) ⇔ x = - 2 y = 0 z = 3

Таким образом, проекция точки М 1 на плоскость А В С будет иметь координаты (- 2 , 0 , 3) .

Ответ: (- 2 , 0 , 3) .

Отдельно остановимся на вопросе нахождения координат проекции точки на координатные плоскости и плоскости, которые параллельны координатным плоскостям.

Пусть задана точки М 1 (x 1 , y 1 , z 1) и координатные плоскости O x y , О x z и O y z . Координатами проекции этой точки на данные плоскости будут соответственно: (x 1 , y 1 , 0) , (x 1 , 0 , z 1) и (0 , y 1 , z 1) . Рассмотрим также плоскости, параллельные заданным координатным плоскостям:

C z + D = 0 ⇔ z = - D C , B y + D = 0 ⇔ y = - D B

И проекциями заданной точки М 1 на эти плоскости будут точки с координатами x 1 , y 1 , - D C , x 1 , - D B , z 1 и - D A , y 1 , z 1 .

Продемонстрируем, как был получен этот результат.

В качестве примера определим проекцию точки М 1 (x 1 , y 1 , z 1) на плоскость A x + D = 0 . Остальные случаи – по аналогии.

Заданная плоскость параллельна координатной плоскости O y z и i → = (1 , 0 , 0) является ее нормальным вектором. Этот же вектор служит направляющим вектором прямой, перпендикулярной к плоскости O y z . Тогда параметрические уравнения прямой, проведенной через точку M 1 и перпендикулярной заданной плоскости, будут иметь вид:

x = x 1 + λ y = y 1 z = z 1

Найдем координаты точки пересечения этой прямой и заданной плоскости. Подставим сначала в уравнение А x + D = 0 равенства: x = x 1 + λ , y = y 1 , z = z 1 и получим: A · (x 1 + λ) + D = 0 ⇒ λ = - D A - x 1

Затем вычислим искомые координаты, используя параметрические уравнения прямой при λ = - D A - x 1:

x = x 1 + - D A - x 1 y = y 1 z = z 1 ⇔ x = - D A y = y 1 z = z 1

Т.е., проекцией точки М 1 (x 1 , y 1 , z 1) на плоскость будет являться точка с координатами - D A , y 1 , z 1 .

Пример 2

Необходимо определить координаты проекции точки М 1 (- 6 , 0 , 1 2) на координатную плоскость O x y и на плоскость 2 y - 3 = 0 .

Решение

Координатной плоскости O x y будет соответствовать неполное общее уравнение плоскости z = 0 . Проекция точки М 1 на плоскость z = 0 будет иметь координаты (- 6 , 0 , 0) .

Уравнение плоскости 2 y - 3 = 0 возможно записать как y = 3 2 2 . Теперь просто записать координаты проекции точки M 1 (- 6 , 0 , 1 2) на плоскость y = 3 2 2:

6 , 3 2 2 , 1 2

Ответ: (- 6 , 0 , 0) и - 6 , 3 2 2 , 1 2

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Словесная форма

Графическая форма

1. Отложить на осях X, Y, Ζ соответствующие координаты точки А. Получаем точки A x , A y , A z

2. Горизонтальная проекция А 1 находится на пересечении линий связи из точек A x и A y , проведенных параллельно осям X и Y

3. Фронтальная проекция А 2 находится на пересечении линий связи из точек A x и A z , проведенных параллельно осям X и Ζ

4. Профильная проекция А 3 находится на пересечении линий связи из точек A z и A y , проведенных параллельно осям Ζ и Y

3.2. Положение точки относительно плоскостей проекций

Положение точки в пространстве относительно плоскостей проекций определяется её координатами. Координатой Х определяется удалённость точки от плоскости П 3 (проекция на П 2 или П 1), координатой У – удалённость от плоскости П 2 (проекция на П 3 или П 1), координатой Z – удаленность от плоскости П 1 (проекция на П 3 или П 2). В зависимости от значения этих координат точка может занимать в пространстве как общее, так и частное положение по отношению к плоскостям проекций (рис. 3.1).

Рис. 3.1. Классификация точек

Т очка общего положения . Координаты точки общего положения не равны нулю (x ≠0, y ≠0, z ≠0 ), и в зависимости от знака координаты точка может располагаться в одном из восьми октантов (табл. 2.1).

На рис. 3.2 даны чертежи точек общего положения. Анализ их изображений позволяет сделать вывод, что они располагаются в следующих октантах пространства: А(+X;+Y; +Z( Iоктанту;B(+X;+Y;-Z( IVоктанту;C(-X;+Y; +Z( Vоктанту;D(+X;+Y; +Z( IIоктанту.

Точки частного положения . Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле проекций, другие две – на осях проекций. На рис. 3.3 такими точками являются точки А, В,C,D,G.AП 3 ,то точка Х А =0; ВП 3 ,то точка Х В =0; СП 2 ,то точкаY C =0;DП 1 ,то точкаZ D =0.

Точка может принадлежать сразу двум плоскостям проекций, если она лежит на линии пересечения этих плоскостей – оси проекций. У таких точек не равна нулю только координата на этой оси. На рис. 3.3 такой точкой является точкаG(G OZ,то точка Х G =0,Y G =0).

3.3. Взаимное положение точек в пространстве

Рассмотрим три варианта взаимного расположения точек в зависимости от соотношения координат, определяющих их положение в пространстве.

    На рис. 3.4 точки AиBимеют различные координаты.

Их взаимное расположение можно оценить по удаленности к плоскостям проекций: Y А >Y В, тогда точкаAрасположена дальше от плоскости П 2 и ближе к наблюдателю, чем точкаB; Z А >Z В, тогда точкаAрасположена дальше от плоскости П 1 и ближе к наблюдателю, чем точкаB; X А

    На рис. 3.5 представлены точки A, B, С, D, у которых одна из координат совпадает, а две другие отличаются.

Их взаимное расположение можно оценить по удалённости к плоскостям проекций следующим образом:

Y А =Y В =Y D , то точки А, В и D равноудалены от плоскости П 2 , и их горизонтальные и профильные проекции расположены соответственно на прямых [А 1 В 1 ]llОХ и [А 3 В 3 ]llOZ. Геометрическим местом таких точек служит плоскость, параллельная П 2 ;

Z А =Z В =Z С, то точки А, В и С равноудалены от плоскости П 1 , и их фронтальные и профильные проекции расположены соответственно на прямых [А 2 В 2 ]llОХ и [А 3 С 3 ]llOY. Геометрическим местом таких точек служит плоскость, параллельная П 1 ;

X А =X C =X D , то точки А, C и D равноудалены от плоскости П 3 и их горизонтальные и фронтальные проекции расположены соответственно на прямых [А 1 C 1 ]llOY и [А 2 D 2 ]llOZ . Геометрическим местом таких точек служит плоскость, параллельная П 3 .

3. Если у точек равны две одноименные координаты, то они называются конкурирующими . Конкурирующие точки расположены на одной проецирующей прямой. На рис. 3.3 даны три пары таких точек, у которых: X А =X D ; Y А =Y D ; Z D > Z А; X A =X C ; Z A =Z C ; Y C > Y A ; Y A =Y B ; Z A =Z B ; X B > X A .

Различают горизонтально конкурирующие точки А и D, расположенные на горизонтально проецирующей прямой АD, фронтально конкурирующие точки A и C, расположенные на фронтально проецирующей прямой AC, профильно конкурирующие точки A и B, расположенные на профильно проецирующей прямой AB.

Выводы по теме

1. Точка – линейный геометрический образ, одно из основных понятий начертательной геометрии. Положение точки в пространстве можно определить её координатами. Каждая из трёх проекций точки характеризуется двумя координатами, их название соответствует названиям осей, которые образуют соответствующую плоскость проекций: горизонтальная – A 1 (XA; YA); фронтальная – A 2 (XA; ZA); профильная – A 3 (YA; ZA). Трансляция координат между проекциями осуществляется с помощью линий связи. По двум проекциям можно построить проекции точки либо с помощью координат, либо графически.

3. Точка по отношению к плоскостям проекций может занимать в пространстве как общее, так и частное положение.

4. Точка общего положения – точка, не принадлежащая ни одной из плоскостей проекций, т. е. лежащая в пространстве между плоскостями проекций. Координаты точки общего положения не равны нулю (x≠0,y≠0,z≠0).

5. Точка частного положения – это точка, принадлежащая одной или двум плоскостям проекций. Одна из координат у точки частного положения равна нулю, поэтому проекция точки лежит на соответствующем поле плоскости проекций, другие две – на осях проекций.

6. Конкурирующие точки – точки, одноименные координаты которых совпадают. Существуют горизонтально конкурирующие точки, фронтально конкурирующие точки, профильно конкурирующие точки.

Ключевые слова

    Координаты точки

    Точка общего положения

    Точка частного положения

    Конкурирующие точки

Способы деятельности, необходимые для решения задач

– построение точки по заданным координатам в системе трех плоскостей проекций в пространстве;

– построение точки по заданным координатам в системе трех плоскостей проекций на комплексном чертеже.

Вопросы для самопроверки

1. Как устанавливается связь расположения координат на комплексном чертеже в системе трех плоскостей проекций П 1 П 2 П 3 с координатами проекций точек?

2. Какими координатами определяется удалённость точек до горизонтальной, фронтальной, профильной плоскостей проекций?

3. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, перпендикулярном профильной плоско­сти проекций П 3 ?

4. Какие координаты и проекции точки будут изменяться, если точка перемещается в направ­лении, параллельном оси OZ?

5. Какими координатами, определяется горизонтальная (фронтальная, профильная) проекция точки?

7. В каком случае проекция точки совпадает с самой точкой пространства и где располагаются две другие проекции этой точки?

8. Может ли точка принадлежать одновременно трём плоскостям проекций и в каком случае?

9. Как называют точки, одноимённые проекции которых совпадают?

10. Каким образом можно определить, какая из двух точек ближе к наблюдателю, если их фронтальные проекции совпадают?

Задания для самостоятельного решения

1. Дать наглядное изображение точекA,B,C,Dотносительно плоскостей проекций П 1 , П 2 . Точки заданы своими проекциями (рис. 3.6).

2. Построить проекции точек А и В по их координатам на наглядном изображении и комплексном чертеже: А(13,5; 20), В(6,5; –20). Построить проекцию точки С, расположенной симметрично точке А относительно фронтальной плоскости проекций П 2 .

3. Построить проекции точек А, В, С по их координатам на наглядном изображении и комплексном чертеже: А(–20; 0; 0), В(–30; -20; 10), С(–10, –15, 0). Построить точку D, расположенную симметрично точке С относительно осиOХ.

Пример решения типовой задачи

Задача 1. Даны координатыX,Y,ZточекA,B,C,D,E,F(табл. 3.3)

При прямоугольном проецировании система плоскостей проекций представляет собой две взаимно перпендикулярные плоскости проекций (рис. 2.1). Одну условились располагать горизонтально, а другую - вертикально.

Плоскость проекций, расположенную горизонтально, называют горизонтальной плоскостью проекций и обозначают щ, а плоскость, ей перпендикулярную, - фронтальной плоскостью проекций л 2 . Саму систему плоскостей проекций обозначают п/п 2 . Обычно употребляют сокращенные выражения: плоскость Л[, плоскость п 2 . Линию пересечения плоскостей щ и к 2 называют осью проекций ОХ. Она делит каждую плоскость проекций на две части - полы. Горизонтальная плоскость проекций имеет переднюю и заднюю, а фронтальная - верхнюю и нижнюю полы.

Плоскости щ и п 2 делят пространство на четыре части, называемые четвертями и обозначаемые римскими цифрами I, II, III и IV (см. рис. 2.1). Первой четвертью называют часть пространства, ограниченную верхней полой фронтальной и передней полой горизонтальной плоскостей проекций. Для остальных четвертей пространства определения аналогичны предыдущему.

Все машиностроительные чертежи представляют собой изображения, построенные на одной плоскости. На рис. 2.1 система плоскостей проекций является пространственной. Для перехода к изображениям на одной плоскости условились совмещать плоскости проекций. Обычно плоскость п 2 оставляют неподвижной, а плоскость П поворачивают по направлению, указанному стрелками (см. рис. 2.1), вокруг оси ОХ на угол 90° до совмещения ее с плоскостью п 2 . При таком повороте передняя пола горизонтальной плоскости опускается вниз, а задняя поднимается вверх. После совмещения плоскости имеют вид, изобра-

женный на рис. 2.2. Считают, что плоскости проекций непрозрачны и наблюдатель всегда находится в первой четверти. На рис. 2.2 обозначение невидимых после совмещения пол плоскостей взято в скобки, как это принято для выделения на чертежах невидимых фигур.

Проецируемая точка может находиться в любой четверти пространства или на любой плоскости проекций. Во всех случаях для построения проекций через нее проводят проецирующие прямые и находят точки встречи их с плоскостями 711 и 712, которые и являются проек- циями.

Рассмотрим проецирование точки, расположенной в первой четверти. Заданы система плоскостей проекций 711/712 и точка А (рис. 2.3). Через нее проводят две прямые ЛИНИИ, перпендикулярные ПЛОСКОСТЯМ 71) И 71 2 . Одна из них пересечет плоскость 711 в точке А ", называемой горизонтальной проекцией точки А, а другая - плоскость 71 2 в точке А ", называемой фронтальной проекцией точки А.

Проецирующие прямые АА " и АА " определяют плоскость проецирования а. Она перпендикулярна плоскостям Кип 2 , так как проходит через перпендикуляры к ним и пересекает плоскости проекций по прямым А "Ах и А "А х. Ось проекций ОХ перпендикулярна плоскости ос, как линия пересечения двух плоскостей 71| и 71 2 , перпендикулярных третьей плоскости (а), а следовательно, и любой прямой, лежащей в ней. В частности, 0X1А"А х и 0X1А "А х.

При совмещении плоскостей отрезок А "А х, расположенный на плоскости к 2 , остается неподвижным, а отрезок А "А х вместе с плоскостью 71) будет повернут вокруг оси ОХ до совмещения с плоскостью 71 2 . Вид совмещенных плоскостей проекций вместе с проекциями точки А приведен на рис. 2.4, а. После совмещения точки А ", А х и А " окажутся расположенными на одной прямой, перпендикулярной оси ОХ. Отсюда следует вывод, что две проекции одной и той же точки



лежат на общем перпендикуляре к оси проекции. Этот перпендикуляр, соединяющий две проекции одной и той же точки, называют линией проекционной связи.

Чертеж на рис. 2.4, а можно значительно упростить. Обозначения совмещенных плоскостей проекций на чертежах не отмечают и прямоугольники, условно ограничивающие плоскости проекций, не изображают, так как плоскости безграничны. Упрощенный чертеж точки А (рис. 2.4, б) называют также эпюром (от франц. ?pure - чертеж).

Изображенный на рис. 2.3 четырехугольник AE4 "А Х А " является прямоугольником и его противоположные стороны равны и параллельны. Поэтому расстояние от точки А до плоскости П , измеряемое отрезком АА ", на чертеже определяется отрезком А "А х. Отрезок же А "А х = АА" позволяет судить о расстоянии от точки А до плоскости к 2 . Таким образом, чертеж точки дает полное представление о ее расположении относительно плоскостей проекций. Например, по чертежу (см. рис. 2.4, б) можно утверждать, что точка А расположена в первой четверти и удалена от плоскости п 2 на меньшее расстояние, чем от плоскости тс ь так как А "А х А "А х.

Перейдем к проецированию точки во второй, третьей и четвертой четвертях пространства.


При проецировании точки В, расположенной во второй четверти (рис. 2.5), после совмещения плоскостей обе ее проекции окажутся выше оси ОХ.

Горизонтальная проекция точки С, заданной в третьей четверти (рис. 2.6), расположена выше оси ОХ, а фронтальная - ниже.

Точка Д изображенная на рис. 2.7, расположена в четвертой четверти. После совмещения плоскостей проекций обе ее проекции окажутся ниже оси ОХ.

Сравнивая чертежи точек, находящихся в разных четвертях пространства (см. рис. 2.4-2.7), можно заметить, что для каждой характерно свое расположение проекций относительно оси проекций ОХ.

В частных случаях проецируемая точка может лежать на плоскости проекций. Тогда одна ее проекция совпадает с самой точкой, а другая будет расположена на оси проекций. Например, для точки Е, лежащей на плоскости щ (рис. 2.8), горизонтальная проекция совпадает с самой точкой, а фронтальная находится на оси ОХ. У точки Е, расположенной на плоскости к 2 (рис. 2.9), горизонтальная проекция на оси ОХ, а фронтальная совпадает с самой точкой.

ПРОЕКЦИИ ТОЧКИ.

ОРТОГОНАЛЬНАЯ СИСТЕМА ДВУХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Сущность метода ортогонального проецирования заключается в том, что предмет проецируется на две взаимно перпендикулярные плоскости лучами, ортогональными (перпендикулярными) к этим плоскостям..

Одну из плоскостей проекций H располагают горизонтально, а вторую V — вертикально. Плоскость H называют горизонтальной плоскостью проекций, V — фронтальной. Плоскости H и V бесконечны и непрозрачны. Линия пересечения плоскостей проекций называется осью координат и обозначается OX . Плоскости проекций делят пространство на четыре двугранных угла — четверти.

Рассматривая ортогональные проекции, предполагают, что наблюдатель находится в первой четверти на бесконечно большом расстоянии от плоскостей проекций. Так как эти плоскости непрозрачны, то видимыми для наблюдателя будут только те точки, линии и фигуры, которые расположены в пределах той же первой четверти.

При построении проекций необходимо помнить, что ортогональной проекцией точки на плоскость называется основание перпендикуляра, опущенного из данной точки на эту плоскость.

На рисунке показаны точка А и ее ортогональные проекции а 1 и а 2 .

Точку а 1 называют горизонтальной проекцией точки А, точку а 2 — ее фронтальной проекцией . Каждая из них является основанием перпендикуляра, опущенного из точки А соответственно на плоскости H и V .

Можно доказать, что проекции точки всегда расположены на прямых, перпенди кулярных оси ОХ и пересекающих эту ось в одной и той же точке. Действительно, проецирующие лучи А а 1 и А а 2 определяют плоскость, перпендикулярную плоскостям проекций и линии их пересечения — оси ОХ. Эта плоскость пересекает H и V по прямым а 1 а x и а 1 а x , которые образуют с осью OX и друг с другом прямые углы с вершиной в точке а x .

Справедливо и обратное, т. е. если на плоскостях проекций даны точки a 1 и a 2 , расположенные на прямых, пересекающих ось OX в данной точке под прямым углом, то они являются проекциями некоторой точки А. Эта точка определяется пересечением перпендикуляров, восставленных из точек a 1 и a 2 к плоскостям H и V .

Заметим, что положение плоскостей проекций в пространстве может оказаться иным. Например, обе плоскости, будучи взаимно перпендикулярными, могут быть вертикальными Но и в этом случае доказанное выше предположение об ориентации разноименных проекций точек относительно оси остается справедливым.

Чтобы получить плоский чертеж, состоящий из указанных выше проекций, плоскость H совмещают вращением вокруг оси OX с плоскостью V , как показано стрелками на рисунке. В результате передняя полуплоскость H будет совмещена с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V .

Проекционный чертеж, на котором плоскости проекций со всем тем, что на них изображено, совмещены определенным образом одна с другой, называется эпюром (от франц. еpure - чертеж). На рисунке показан эпюр точки А.

При таком способе совмещения плоскостей H и V проекции a 1 и a 2 окажутся расположенными на одном перпендикуляре к оси OX . При этом расстояние a 1 a x от горизонтальной проекции точки до оси OX А до плоскости V , а расстояние a 2 a x от фронтальной проекции точки до оси OX равно расстоянию от самой точки А до плоскости H .

Прямые линии, соединяющие разноименные проекции точки на эпюре, условимся называть линиями проекционной связи .

Положение проекций точек на эпюре зависит от того, в какой четверти находится данная точка. Так, если точка В расположена во второй четверти, то после совмещения плоскостей обе проекции окажутся лежащими над осью OX.

Если точка С находится в третьей четверти, то ее горизонтальная проекция после совмещения плоскостей окажется над осью, а фронтальная — под осью OX . Наконец, если точка D расположена в четвертой четверти, то обе проекции ее окажутся под осью OX . На рисунке показаны точки М и N , лежащие на плоскостях проекций. При таком положении точка совпадает с одной из своих проекций, другая же проекция ее оказывается лежащей на оси OX . Эта особенность отражена и в обозначении: около той проекции, с которой совпадает сама точка, пишется заглавная буква без индекса.

Следует отметить и тот случай, когда обе проекции точки совпадают. Так будет, если точка находится во второй или четвертой четверти на одинаковом расстоянии от плоскостей проекций. Обе проекции совмещаются с самой точкой, если последняя расположена на оси OX .

ОРТОГОНАЛЬНАЯ СИСТЕМА ТРЕХ ПЛОСКОСТЕЙ ПРОЕКЦИЙ.

Выше было показано, что две проекции точки определяют ее положение в пространстве. Так как каждая фигура или тело представляет собой совокупность точек, то можно утверждать, что и две ортогональные проекции предмета (при наличии буквенных обозначений) вполне определяют его форму.

Однако в практике изображения строительных конструкций, машин и различных инженерных сооружений возникает необходимость в создании дополнительных проекций. Поступают так с единственной целью — сделать проекционный чертеж более ясным, удобочитаемым.

Модель трех плоскостей проекций показана на рисунке. Третья плоскость, перпендикулярная и H и V , обозначается буквой W и называется профильной.

Проекции точек на эту плоскость будут также именоваться профильными, а обозначают их заглавными буквами или цифрами с индексом 3 (a з, b з, c з, ... 1з, 2з, 3 3 ...).

Плоскости проекций, попарно пересекаясь, определяют три оси: О X , О Y и О Z , которые можно рассматривать как систему прямоугольных декартовых координат в пространстве с началом в точке О. Система знаков, указанная на рисунке, соответствует «правой системе» координат.

Три плоскости проекций делят пространство на восемь трехгранных углов — это так называемые октанты . Нумерация октантов дана на рисунке.

Для получения эпюра плоскости H и W вращают, как показано на рисунке, до совмещения с плоскостью V . В результате вращения передняя полуплоскость H оказывается совмещенной с нижней полуплоскостью V , а задняя полуплоскость H — с верхней полуплоскостью V . При повороте на 90° вокруг оси О Z передняя полуплоскость W совместится с правой полуплоскостью V , а задняя полуплоскость W — с левой полуплоскостью V .

Окончательный вид всех совмещенных плоскостей проекций дан на рисунке. На этом чертеже оси О X и О Z , лежащие в не подвижной плоскости V , изображены только один раз, а ось О Y показана дважды. Объясняется это тем, что, вращаясь с плоскостью H , ось О Y на эпюре совмещается с осью О Z , а вращаясь вместе с плоскостью W , эта же ось совмещается с осью О X .

В дальнейшем при обозначении осей на эпюре отрицательные полуоси (— О X , О Y , О Z ) указываться не будут.

ТРИ КООРДИНАТЫ И ТРИ ПРОЕКЦИИ ТОЧКИ И ЕЕ РАДИУСА-ВЕКТОРА.

Координатами называют числа, которые ставят в соответствие точке для определе ния ее положения в пространстве или на поверхности.

В трехмерном пространстве положение точки устанавливают с помощью прямоугольных декартовых координат х, у и z .

Координату х называют абсциссой , у ординатой и z аппликатой. Абсцисса х определяет расстояние от данной точки до плоскости W , ордината у — до плоскости V и аппликата z - до плоскости H . Приняв для отсчета координат точки систему, показанную на рисунке, составим таблицу знаков координат во всех восьми октантах. Какая-либо точка пространства А, заданная координатами, будет обозначаться так: A (х, у, z ).

Если х = 5, y = 4 и z = 6, то запись примет следующий вид А (5, 4, 6). Эта точка А, все координаты которой положительны, находится в первом октанте

Координаты точки А являются вместе с тем и координатами ее радиуса-вектора

ОА по отношению к началу координат. Если i , j , k — единичные векторы, направленные соответственно вдоль координатных осей х, у, z (рисунок), то

ОА = О A x i +ОА y j + ОА z k , где ОА Х, ОА У, ОА г — координаты вектора ОА

Построение изображения самой точки и ее проекций на пространственной модели (рисунок) рекомендуется осуществлять с помощью координатного прямоугольного параллелепипеда. Прежде всего на осях координат от точки О откладывают отрезки, соответственно равные 5, 4 и 6 единицам длины. На этих отрезках a x , О a y , О a z ), как на ребрах, строят прямоугольный параллелепипед. Вершина его, противоположная началу координат, и будет определять заданную точку А. Легко заметить, что для определения точки А достаточно построить только три ребра параллелепипеда, например О a x , a x a 1 и a 1 А или О a y , a y a 1 и a 1 A и т. д. Эти ребра образуют координатную ломаную линию, длина каждого звена которой определяется соответствующей координатой точки.

Однако построение параллелепипеда позволяет определить не только точку А, но и все три ее ортогональные проекции.

Лучами, проецирующими точку на плоскости H , V , W являются те три ребра параллелепипеда, которые пересекаются в точке А.

Каждая из ортогональных проекций точки А, будучи расположенной на плоскости, определяется только двумя координатами.

Так, горизонтальная проекция a 1 определяется координатами х и у, фронтальная проекция a 2 — координатами х и z , профильная проекция a 3 координатами у и z . Но две любые проекции определяются тремя координатами. Вот почему задание точки двумя проекциями равносильно заданию точки тремя координатами.

На эпюре (рисунок), где все плоскости проекций совмещены, проекции a 1 и a 2 окажутся на одном перпендикуляре к оси О X , а проекции a 2 и a 3 на одном перпендикуляре к оси OZ .

Что касается проекций a 1 и a 3 , то и они связаны прямыми a 1 a y и a 3 a y , перпендикулярными оси О Y . Но так как эта ось на эпюре занимает два положения, то отрезок a 1 a y не может быть продолжением отрезка a 3 a y .

Построение проекций точки А (5, 4, 6) на эпюре по заданным координатам выполняют в такой последовательности: прежде всего на оси абсцисс от начала координат откладывают отрезок О a x = х (в нашем случае х = 5), затем через точку a x проводят перпендикуляр к оси О X , на котором с учетом знаков откладываем отрезки a x a 1 = у (получаем a 1 ) и a x a 2 = z (получаем a 2 ). Остается построить профильную проекцию точки a 3 . Так как профильная и фронтальная проекции точки должны быть расположены на одном перпендикуляре к оси OZ , то через a 3 проводят прямую a 2 a z ^ OZ .

Наконец, возникает последний вопрос: на каком расстоянии от оси О Z должна находиться a 3 ?

Рассматривая координатный параллелепипед (см. рисунок), ребра которого a z a 3 = Oa y = a x a 1 = y заключаем, что искомое расстояние a z a 3 равно у. Отрезок a z a 3 откладывают вправо от оси ОZ, если у>0, и влево, если у

Проследим за тем, какие изменения произойдут на эпюре, когда точка начнет менять свое положение в пространстве.

Пусть, например, точка А (5, 4, 6) станет перемещаться по прямой, перпендикулярной плоскости V . При таком движении будет меняться только одна координата у, показывающая расстояние от точки до плоскости V . Постоянными будут оставаться координаты х и z , а проекция точки, определяемая этими координатами, т. е. a 2 не изменит своего положения.

Что касается проекций a 1 и a 3 , то первая начнет приближаться к оси О X , вторая — к оси О Z . На рисунках новому положению точки соответствуют обозначения a 1 (a 1 1 a 2 1 a 3 1 ). В тот момент, когда точка окажется на плоскости V (y = 0), две из трех проекций (a 1 2 и a 3 2 ) будут лежать на осях.

Переместившись из I октанта во II , точка начнет удаляться от плоскости V , координата у станет отрицательной, ее абсолютная величина будет возрастать. Горизонтальная проекция этой точки, будучи расположенной на задней полуплоскости H , на эпюре окажется выше оси О X , а профильная проекция, находясь на задней полуплоскости W , на эпюре будет слева от оси О Z . Как всегда, отрезок a z a 3 3 = у.

На последующих эпюрах мы не станем обозначать буквами точки пересечения координатных осей с линиями проекционной связи. Это в какой-то мере упростит чертеж.

В дальнейшем встретятся эпюры и без координатных осей. Так поступают на практике при изображении предметов, когда существенно только само изображе ние предмета, а не его положение относи тельно плоскостей проекций.

Плоскости проекций в этом случае определены с точностью лишь до параллельного переноса (рисунок). Их обычно перемещают параллельно самим себе с таким расчетом, чтобы все точки предмета оказались над плоскостью H и перед плоскостью V . Так как положение оси X 12 оказывается неопределенным, то образование эпюра в этом случае не нужно связывать с вращением плоскостей вокруг координатной оси. При переходе к эпюру плоскости H и V совмещают так, чтобы разноименные проекции точек были расположены на вертикальных прямых.

Безосный эпюр точек А и В (рисунок) не определяет их положения в пространстве, но позволяет судить об их относительной ориентировке. Так, отрезок △x характеризует смещение точки А по отношению к точке В в направлении, параллельном плоскостям H и V. Иными словами, △x указывает, насколько точка А расположена левее точки В. Относительное смещение точки в направлении, перпендикулярном плоскости V, определяется отрезком △y, т. е. точка А в нашем примере ближе к наблюдателю, чем точка В, на расстояние, равное △y.

Наконец, отрезок △z показывает превышение точки А над точкой В.

Сторонники безосного изучения курса начертательной геометрии справедливо указывают, что при решении многих задач можно обходиться без осей координат. Однако полный отказ от них нельзя признать целесообразным. Начертательная геометрия призвана подготовить будущего инженера не только к грамотному выполнению чертежей, но и к решению различных технических задач, среди которых не последнее место занимают задачи пространственной статики и механики. А для этого необходимо воспитывать умение ориентировать тот или иной предмет относительно декартовых осей координат. Указанные навыки будут необходимы и при изучении таких разделов начертательной геометрии, как перспектива и аксонометрия. Поэтому на ряде эпюров этой книги мы сохраняем изображения координатных осей. Такие чертежи определяют не только форму предмета, но и его расположение относительно плоскостей проекций.