Синтез и распад химических элементов в природе. Происхождение химических элем

Из 26 известных в настоящее время трансурановых элементов 24 не встречаются на нашей планете. Они были созданы человеком. Как же синтезируют тяжелые и сверхтяжелые элементы?
Первый список из тридцати трех предполагаемых элементов, «Таблицу субстанций, принадлежащих всем царствам природы, которые могут считаться простейшими составными частями тел», опубликовал Антуан Лоран Лавуазье в 1789 году. Вместе с кислородом, азотом, водородом, семнадцатью металлами и еще несколькими настоящими элементами в нем фигурировали свет, теплород и некоторые окислы. А когда 80 лет спустя Менделеев придумал Периодическую систему, химики знали 62 элемента. К началу XX века считалось, что в природе существуют 92 элемента - от водорода до урана, хотя некоторые из них еще не были открыты.Тем не менее уже в конце XIX века ученые допускали существование элементов, следующих в таблице Менделеева за ураном (трансуранов), но обнаружить их никак не удавалось. Сейчас известно, что в земной коре содержатся следовые количества 93-го и 94-го элементов - нептуния и плутония. Но исторически эти элементы сначала получили искусственно и лишь потом обнаружили в составе минералов.
Из 94 первых элементов у 83 имеются либо стабильные, либо долгоживущие изотопы, период полураспада которых сравним с возрастом Солнечной системы (они попали на нашу планету из протопланетного облака). Жизнь остальных 11 природных элементов много короче, и потому они возникают в земной коре лишь в результате радиоактивных распадов на краткое время. А как же все остальные элементы, от 95-го до 118-го? На нашей планете их нет. Все они были получены искусственным путем.
Первый искусственный
Создание искусственных элементов имеет долгую историю. Принципиальная возможность этого стала понятна в 1932 году, когда Вернер Гейзенберг и Дмитрий Иваненко пришли к выводу, что атомные ядра состоят из протонов и нейтронов. Два года спустя группа Энрико Ферми попыталась получить трансураны, облучая уран медленными нейтронами. Предполагалось, что ядро урана захватит один или два нейтрона, после чего претерпит бета-распад с рождением 93-го или 94-го элементов. Они даже поспешили объявить об открытии трансуранов, которые в 1938 году в своей Нобелевской речи Ферми назвал аусонием и гесперием. Однако немецкие радиохимики Отто Ган и Фриц Штрассман вместе с австрийским физиком Лизой Мейтнер вскоре показали, что Ферми ошибся: эти нуклиды были изотопами уже известных элементов, возникшими в результате расщепления ядер урана на пары осколков приблизительно одинаковой массы. Именно это открытие, совершенное в декабре 1938 года, сделало возможным создание ядерного реактора и атомной бомбы.Первым же синтезированным элементом стал вовсе не трансуран, а предсказанный еще Менделеевым экамарганец. Его искали в различных рудах, но безуспешно. А в 1937 году экамарганец, позднее названный технецием (от греческого??? - искусственный) был получен при обстреле молибденовой мишени ядрами дейтерия, разогнанными в циклотроне Национальной лаборатории имени Лоуренса в Беркли.
Легкие снаряды
Элементы с 93-го до 101-го были получены при взаимодействии ядер урана либо следующих за ним трансуранов с нейтронами, дейтронами (ядрами дейтерия) или альфа-частицами (ядрами гелия). Первого успеха здесь добились американцы Эдвин Макмиллан и Филип Эйбелсон, которые в 1940 году синтезировали нептуний-239, отработав идею Ферми: захват ураном-238 медленных нейтронов и последующий бета-распад урана-239.Следующий, 94-й элемент - плутоний - впервые обнаружили при изучении бета-распада нептуния-238, полученного дейтронной бомбардировкой урана на циклотроне Калифорнийского университета в Беркли в начале 1941 года. А вскоре стало понятно, что плутоний-239 под действием медленных нейтронов делится не хуже урана-235 и может служить начинкой атомной бомбы. Поэтому все сведения о получении и свойствах этого элемента засекретили, и статья Макмиллана, Гленна Сиборга (за свои открытия они разделили Нобелевскую премию 1951 года) и их коллег с сообщением о втором трансуране появилась в печати лишь в 1946 году.Американские власти почти на шесть лет задержали и публикацию об открытии 95-го элемента, америция, который в конце 1944 года был выделен группой Сиборга из продуктов нейтронной бомбардировки плутония в ядерном реакторе. Несколькими месяцами ранее физики из этой же команды получили первый изотоп 96-го элемента с атомным весом 242, синтезированный при бомбардировке урана-239 ускоренными альфа-частицами. Его назвали кюрием в знак признания научных заслуг Пьера и Марии Кюри, открыв тем самым традицию наименования трансуранов в честь классиков физики и химии.60-дюймовый циклотрон Калифорнийского университета стал местом сотворения еще трех элементов, 97-го, 98-го и 101-го. Первые два назвали по месту рождения - берклием и калифорнием. Берклий был синтезирован в декабре 1949 года при обстреле альфа-частицами мишени из америция, калифорний - двумя месяцами позже при такой же бомбардировке кюрия. 99-й и 100-й элементы, эйнштейний и фермий, были обнаружены при радиохимическом анализе проб, собранных в районе атолла Эниветок, где 1 ноября 1952 года американцы взорвали десятимегатонный термоядерный заряд «Майк», оболочка которого была изготовлена из урана-238. Во время взрыва ядра урана поглощали до пятнадцати нейтронов, после чего претерпевали цепочки бета-распадов, которые и вели к образованию этих элементов. 101-й элемент, менделевий, был получен в начале 1955 года. Сиборг, Альберт Гиорсо, Бернард Харви, Грегори Чоппин и Стэнли Томсон подвергли альфа-частичной бомбардировке около миллиарда (это очень мало, но больше просто не было) атомов эйнштейния, электролитически нанесенных на золотую фольгу. Несмотря на чрезвычайно высокую плотность пучка (60 трлн альфа-частиц в секунду), было получено лишь 17 атомов менделевия, но при этом удалось установить их радиационные и химические свойства.
Тяжелые ионы
Менделевий стал последним трансураном, полученным с помощью нейтронов, дейтронов или альфа-частиц. Для получения следующих элементов требовались мишени из элемента номер 100 - фермия, которые тогда было невозможно изготовить (даже сейчас в ядерных реакторах фермий получают в нанограммовых количествах).Ученые пошли другим путем: использовали для бомбардировки мишеней ионизированные атомы, чьи ядра содержат более двух протонов (их называют тяжелыми ионами). Для разгона ионных пучков потребовались специализированные ускорители. Первую такую машину HILAC (Heavy Ion Linear Accelerator) запустили в Беркли в 1957 году, вторую, циклотрон У-300 - в Лаборатории ядерных реакций Объединенного института ядерных исследований в Дубне в 1960-м. Позднее в Дубне заработали и более мощные установки У-400 и У-400М. Еще один ускоритель UNILAC (Universal Linear Accelerator) с конца 1975 года действует в немецком Центре по исследованию тяжелых ионов имени Гельмгольца, в Виксхаузене, одном из районов Дармштадта.В ходе бомбардировок тяжелыми ионами мишеней из свинца, висмута, урана или трансуранов возникают сильно возбужденные (горячие) ядра, которые либо разваливаются, либо сбрасывают избыточную энергию посредством испускания (испарения) нейтронов. Иногда эти ядра испускают один-два нейтрона, после чего претерпевают и другие превращения - например, альфа-распад. Такой тип синтеза называется холодным. В Дармштадте с его помощью получили элементы с номерами от 107 (борий) до 112 (коперниций). Этим же способом в 2004 году японские физики создали один атом 113-го элемента (годом ранее он был получен в Дубне). При горячем синтезе новорожденные ядра теряют больше нейтронов - от трех до пяти. Этим способом в Беркли и в Дубне синтезировали элементы со 102-го (нобелий) до 106-го (сиборгий, в честь Гленна Сиборга, под руководством которого было создано девять новых элементов). Позднее в Дубне таким путем изготовили шесть самых массивных сверхтяжеловесов - с 113-го по 118-й. Международный союз теоретической и прикладной химии (IUPAC, International Union of Pure and Applied Chemistry) пока утвердил лишь имена 114-го (флеровий) и 116-го (ливерморий) элементов.
Всего три атома
118-й элемент с временным названием унуноктий и символом Uuo (по правилам IUPAC, временные имена элементов образуются от латинских и греческих корней названий цифр их атомного номера, un-un-oct (ium) - 118) был создан совместными усилиями двух научных групп: дубнинской под руководством Юрия Оганесяна и Ливерморской национальной лаборатории под руководством Кентона Муди, ученика Сиборга. Унуноктий в таблице Менделеева расположен под радоном и поэтому может быть благородным газом. Однако его химические свойства пока выяснить не удалось, поскольку физики создали лишь три атома этого элемента с массовым числом 294 (118 протонов, 176 нейтронов) и периодом полураспада около миллисекунды: два в 2002 году и один в 2005-м. Их получили бомбардировкой мишени из калифорния-249 (98 протонов, 151 нейтрон) ионами тяжелого изотопа кальция с атомной массой 48 (20 протонов и 28 нейтронов), разогнанными на ускорителе У-400. Общее число кальциевых «пуль» составило 4,1х1019, так что производительность дубнинского «унуноктиевого генератора» крайне мала. Однако, по словам Кентона Муди, У-400 - единственная в мире машина, на которой можно было синтезировать 118-й элемент.«Каждая серия опытов по синтезу трансуранов добавляет новую информацию о структуре ядерной материи, которую используют для моделирования свойств сверхтяжелых ядер. В частности, работы по синтезу 118-го элемента позволили отбросить несколько прежних моделей, - вспоминает Кентон Муди. - Мы сделали мишень из калифорния, поскольку более тяжелые элементы в нужных количествах были недоступны. Кальций-48 содержит восемь добавочных нейтронов по сравнению со своим основным изотопом кальцием-40. При слиянии его ядра с ядром калифорния образовывались ядра со 179 нейтронами. Они находились в сильно возбужденных и поэтому особо нестабильных состояниях, из которых быстро выходили, сбрасывая нейтроны. В результате мы получили изотоп 118-го элемента со 176 нейтронами. И это были настоящие нейтральные атомы с полным набором электронов! Живи они чуть подольше, можно было бы судить и об их химических свойствах».
Мафусаил номер 117
Элемент 117, он же унунсептий, был получен позже - в марте 2010 года. Этот элемент был рожден на той же машине У-400, где, как и раньше, обстреливали ионами кальция-48 мишень из берклия-249, синтезированного в Окриджской национальной лаборатории. При столкновении ядер берклия и кальция возникали сильно возбужденные ядра унунсептия-297 (117 протонов и 180 нейтронов). Экспериментаторам удалось получить шесть ядер, пять из которых испарили по четыре нейтрона и превратились в унунсептий-293, а оставшееся испустило три нейтрона и дало начало унунсептию-294.В сравнении с унуноктием унунсептий оказался настоящим Мафусаилом. Период полураспада более легкого изотопа - 14 миллисекунд, а более тяжелого - целых 78 миллисекунд! В 2012 году дубнинские физики получили еще пять атомов унунсептия-293, позже - несколько атомов обоих изотопов. Весной 2014 года ученые из Дармштадта сообщили о синтезе четырех ядер 117-го элемента, два из которых имели атомную массу 294. Период полураспада этого «тяжелого» унунсептия, измеренный немецкими учеными, составил около 51 миллисекунды (это хорошо согласуется с оценками ученых из Дубны).Сейчас в Дармштадте готовят проект нового линейного ускорителя тяжелых ионов на сверхпроводящих магнитах, который позволит провести синтез 119-го и 120-го элементов. Аналогичные планы осуществляют и в Дубне, где строится новый циклотрон ДС-280. Не исключено, что всего через несколько лет станет возможным синтез новых сверхтяжелых трансуранов. И сотворение 120-го, а то и 126-го элемента со 184 нейтронами и открытие острова стабильности станут реальностью.
Долгая жизнь на острове стабильности
Внутри ядер существуют протонные и нейтронные оболочки, в чем-то похожие на электронные оболочки атомов. Ядра с полностью заполненными оболочками особо устойчивы по отношению к спонтанным превращениям. Числа нейтронов и протонов, соответствующих таким оболочкам, называются магическими. Некоторые из них определены экспериментально - это 2, 8, 20 и 28. Оболочечные модели позволяют вычислить «магические числа» сверхтяжелых ядер и теоретически - правда, без полной гарантии. Есть основания ожидать, что нейтронное число 184 окажется магическим. Ему могут соответствовать протонные числа 114, 120 и 126, причем последнее опять-таки должно быть магическим. Если это так, то изотопы 114-го, 120-го и 126-го элементов, содержащие по 184 нейтрона, будут жить куда дольше своих соседей по таблице Менделеева - минуты, часы, а то и годы (эту область таблицы принято называть островом стабильности). Самые большие надежды ученые возлагают на последний изотоп с дважды магическим ядром.
Дубнинский метод

При попадании тяжелого иона в область ядерных сил мишени может образоваться составное ядро в возбужденном состоянии. Оно либо распадается на осколки примерно равной массы, либо испускает (испаряет) несколько нейтронов и переходит в основное (невозбужденное) состояние.
«Элементы со 113-го по 118-й созданы на основе замечательного метода, разработанного в Дубне под руководством Юрия Оганесяна, - объясняет участник дармштадской команды Александр Якушев. - Вместо никеля и цинка, применявшихся для обстрела мишеней в Дармштадте, Оганесян взял изотоп с куда меньшей атомной массой - кальций-48. Дело в том, что использование легких ядер повышает вероятность их слияния с ядрами мишени. Ядро кальция-48 к тому же дважды магическое, поскольку сложено из 20 протонов и 28 нейтронов. Поэтому выбор Оганесяна сильно способствовал выживанию составных ядер, возникающих при обстреле мишени. Ведь ядро может сбросить несколько нейтронов и дать начало новому трансурану только в том случае, если оно сразу после рождения не разваливается на осколки. Чтобы синтезировать таким образом сверхтяжелые элементы, дубнинские физики делали мишени из наработанных в США трансуранов - сначала плутония, потом америция, кюрия, калифорния и, наконец, берклия. Кальция-48 в природе всего 0,7%. Его извлекают на электромагнитных сепараторах, это дорогая процедура. Один миллиграмм этого изотопа стоит около $200. Этого количества хватает на час-другой обстрела мишени, а эксперименты длятся месяцами. Сами мишени еще дороже, их цена достигает миллиона долларов. Оплата счетов за электричество тоже встает в копеечку - ускорители тяжелых ионов потребляют мегаваттные мощности. В общем, синтез сверхтяжелых элементов - удовольствие не из дешевых».

Синтези́рованные (иску́сственные) хими́ческие эле́менты - элементы, впервые идентифицированные как продукт искусственного синтеза. Часть из них (тяжёлые трансурановые элементы, все трансактиноиды), по-видимому, отсутствует в природе; другие элементы впоследствии были обнаружены в следовых количествах в земной коре (технеций, прометий, астат, нептуний, плутоний, америций, кюрий, берклий, калифорний), в фотосферах звёзд (технеций и, возможно, прометий), в оболочках сверхновых (калифорний и, вероятно, продукты его распада - берклий, кюрий, америций и более лёгкие).

Последним из элементов, найденным в природе до того, как он был синтезирован искусственно, стал франций (1939 год). Первым синтезированным химическим элементом был технеций в 1937 году. По состоянию на 2012 год, синтезированы ядерным слиянием или распадом элементы до унуноктия с атомным номером 118, а также предпринимались попытки синтеза следующих сверхтяжёлых трансурановых элементов. Синтез новых трансактиноидов и суперактиноидов продолжается.

Наиболее известными лабораториями, синтезировавшими по несколько новых элементов и несколько десятков или сотен новых изотопов, являются Национальная лаборатория им. Лоуренса в Беркли и Ливерморская национальная лаборатория в США, Объединённый институт ядерных исследований в СССР/России (Дубна), Европейский Центр по изучению тяжёлых ионов имени Гельмгольца в Германии, Кавендишская лаборатория Кембриджского университета в Великобритании, Институт физико-химических исследований в Японии и другие последние десятилетия над синтезом элементов в американских, немецком и российском центрах работают международные коллективы.

  • 1 Открытие синтезированных элементов по странам
    • 1.1 СССР, Россия
    • 1.2 США
    • 1.3 Германия
    • 1.4 Спорные приоритеты и совместные результаты
      • 1.4.1 США и Италия
      • 1.4.2 СССР и США
      • 1.4.3 Россия и Германия
      • 1.4.4 Россия и Япония
  • 2 Примечания
  • 3 Ссылки

Открытие синтезированных элементов по странам

СССР, Россия

В СССР и России были синтезированы элементы нобелий (102), флеровий (114), унунпентий (115), ливерморий (116), унунсептий (117), унуноктий (118).

США

В США были синтезированы элементы прометий (61), астат (85), нептуний (93), плутоний (94), америций (95), кюрий (96), берклий (97), калифорний (98), эйнштейний (99), фермий (100), менделевий (101), сиборгий (106).

Германия

В Германии были синтезированы элементы хассий (108), мейтнерий (109), дармштадтий (110), рентгений (111), коперниций (112).

Спорные приоритеты и совместные результаты

Для ряда элементов приоритет равноутверждён согласно решению совместной комиссии ИЮПАК и ИЮПАП или остаётся спорным:

США и Италия

Технеций (43) - в результате совместной работы получен на ускорителе в Беркли, Калифорния и химически идентифицирован в Палермо, Сицилия.

СССР и США

Лоуренсий (103), резерфордий (104), дубний (105).

Россия и Германия

Борий (107).

Россия и Япония

Унунтрий (113).

Примечания

  1. Emsley John. Nature"s Building Blocks: An A-Z Guide to the Elements. - New. - New York, NY: Oxford University Press, 2011. - ISBN 978-0-19-960563-7.
  2. Институт в Дубне стал четвёртым в мире по количеству открытых изотопов
  3. Isotope ranking reveals leading labs англ.
  4. http://flerovlab.jinr.ru/rus/elements.html
  5. Временное название для 115-го элемента; предложено название ланжевений.
  6. Временное название для 117-го элемента;
  7. Временное название для 118-го элемента; предложено название московий.
  8. R. C. Barber et al. Discovery of the transfermium elements (англ.) // Pure and Applied Chemistry. - 1993. - Т. 65. - № 8. - С. 1757-1814.
  9. последнее время мне неоднократно приходилось писать о ситуации с попранием приоритета советских ученых в синтезе сверхтяжелых
  10. О защите приоритета
  11. Chemistry: Periodic Table: darmstadtium: historical information
  12. http://element114.narod.ru/Projects/ao-iupac.html
  13. О защите приоритета
  14. Временное название для 113-го элемента; предложены названия беккерелий, японий, рикений, нихоний.

«МЫСЛИ В СЛУХ»

НАУЧНЫЙ РОМАН НА ОСНОВЕ НАУЧНОЙ ТЕОРИИ
МИРОЗДАНИЯ, НЕЙТРОННОЙ ФИЗИКИ И НЕЙТРОННОЙ ХИМИИ

Валерий Фёдорович Андрус

"Наша задача развить средства получения энергии из запасов, которые вечны и неисчерпаемы, развить методы, которые не используют потребление и расход каких бы то ни было "материальных" носителей. Сейчас мы совершенно уверены, что реализация этой идеи не за горами. : возможности развития этой концепции заключаются именно в том, что бы использовать для работы двигателей в любой точке планеты чистую энергию окружающего пространства..."

(Тесла, 1897)

Оставьте комментарий

Для начала скачайте таблицу превращений химических элементов
и
Ознакомьтесь с основными понятиями нейтронной физики

ЯДЕРНАЯ ХИМИЯ
СИНТЕЗ ЭЛЕМЕНТОВ С ПОЗИЦИИ НЕЙТРОННОЙ ФИЗИКИ

Мы говорили об искусственном синтезе элементов и отмечали, что это не элементы, а молекулы и даже сплавы. На первый взгляд может показаться, что это гипотеза и дело обстоит как–то иначе. Чтобы поставить окончательную точку над "i" в этих рассуждениях, перейдем к ядерной химии.

“...Предметом ядерной химии являются реакции, в которых происходит превращение элементов, т.е. изменение ядер их атомов.

Самопроизвольный распад радиоактивных атомов, рассмотренный выше (мы к нему вернемся), представляет собой ядерную реакцию, в которой исходным является одно ядро. Известны и другие реакции, в которых с ядром реагирует протон р, дейтрон (ядро атома дейтерия 1 2 H) d, альфа – частица α, нейтрон n или фотон γ (обычно гамма – лучи). Удалось вызвать атомные превращения и под действием быстрых электронов. Вместо α–частиц (ядер 4 Не) иногда используют ядра более легкого изотопа гелия 3 Не. В последнее время все шире применяют для бомбардировки атомных ядер ускоренные ядра более тяжелых элементов вплоть до неона.

Первой ядерной реакцией, осуществленной в лаборатории, была реакция (Резерфорд, 1919).

В этой реакции ядро азота реагирует с ядром гелия, обладающим значительной кинетической энергией. В результате соударения образуются два новых ядра: Кислород 17 О и Водорода 1 Н. Ядро 17 О стабильно, так что данная реакция не приводит к возникновению искусственной радиоактивности. В большинстве же ядерных реакций образуются нестабильные изотопы, которые затем серией радиоактивных превращений переходят в стабильные...”

Для удобства и контрастности, разобьем материал на небольшие кусочки с пояснениями.

Ядер у нас нет, но есть шестиконечный еж Азота (14 N), который бомбардируется ежом Гелия (4 Не) состоящим из атома Водорода и шести пятерок нейтронов по “плоскостям” кубика.

Рассматривая конечный результат реакции, можно смело утверждать следующее:

Еж Азота с шестью иголками присоединил на каждую иголку по одной пятерке с относительной массой 0,5, в результате чего получили ежа с относительной массой 17 – Кислород. Мы знаем, каждый новый слой пятерок это новый элемент.

Мог ли еж Азота получить все шесть пятерок в результате разрушения одного ежа Гелия? Конечно, не мог. Для получения одного ежа Кислорода понадобилось разрушить множество ежей Гелия, создавая нейтронный поток, подобный гравитационному, с той же схемой роста ежа. Этот поток мог и не совпадать с гравитационным. В результате разрушения Гелия оставались целыми и некоторые кубики Водорода. Излишние нейтроны – это или свободные тепловые носители или излучение. Результат реакции – это желаемое уравнение, не соответствующее действительности, так как не учтены избыточные нейтроны потока. Надеюсь, Вы помните, что нейтрон по НФ в 9 раз меньше по массе, чем тот, с которым идет сравнение в реакциях. Продолжим.

“...Согласно Реми, ядерные реакции можно классифицировать по аналогии с обычными химическими реакциями.

В большинстве искусственных ядерных превращений происходят так называемые реакции вытеснения или замещения. Например:

При написании ядерных реакций, используют чаще сокращенную запись, при которой бомбардирующая и выбиваемая частицы отделяются запятой и заключаются в скобки, перед которыми записывается символ исходного, а после – образующегося атома. Например, вышеприведенная реакция, которую впервые осуществил Резерфорд, может быть записана так: 14 N(б ,p) 17 O.

В такой записи приведем еще примеры ядерных реакций замещения, происходящих при бомбардировке ускоренными частицами алюминия:

17AL(d,α) 25 Mg, 27 AL(d,p) 28 AL, 27 AL(d,n) 28 Si, 27 AL(p,α) 24 Mg, 27 AL(n,p) 27 Mg...”

В этом отрывке идет речь о реакциях замещения. С позиции модели ежа здесь нет никаких реакций замещения. При бомбардировках ежа идет или абсолютно нормальный его рост, такой же, как в природе, или потеря некоторых пятерок в иголках. Владея изложенным материалом книги, можно написать полные ряды таких реакций без единого пропуска, и все они или уже получены, или их можно получить со 100% вероятностью.

“...В результате реакции присоединения бомбардирующая частиц захватывается ядром, которое, в свою очередь, не испускает никакой другой частицы, а освобождающаяся при этом энергия выделяется в виде γ–излучения, например:

27\AL(n,γ) 28 AL, 7 Li(p,γ) 8 Be...”

Это все тот же процесс нормального роста ежа, в результате которого некоторые нейтроны разрушились на осколки γ– излучение.

“...Ядерные реакции диссоциации (как и реакции термической диссоциации молекул) вызываются кинетической энергией сталкивающихся частиц. Например: 79 Вr(n,2n) 78 Вr, 2 Н(б ,n и б ) 1 Н, 2 Н(г, n) 1 H.

Последняя реакция является фотохимической реакцией, т.е. вызванной действием электромагнитного излучения, ядерной диссоциации.

В настоящее время известен целый ряд обратимых реакций:

Все реакции – это нейтронное взаимодействие ежа объекта – мишени, который находится в искусственном потоке или осколков нейтронов (γ), или нейтронов или других ежей, с бомбардирующим объектом. Если поток готовых нейтронов достаточно плотный, то он будет образовывать пятерки, и еж будет расти.

Если поток нейтронов рассеянный или его нужно получить, сначала разрушив бомбардирующего ежа, то еж–мишень теряет свои пятерки.

Реакция диссоциации – это промежуточное состояние потока между плотным и рассеянным.

О реакциях искусственного синтеза и деления мы уже говорили, но, как говорят американцы, мое слово против вашего может ничего не значить и тогда каждый останется при своем мнении. Однако реакция деления, которая сейчас будет приведена, фундаментально докажет, что взгляды НФ правильные.

Рассмотрим одну из реакций деления Урана–235, применяемую в ядерной энергетике, вследствие поглощения нейтрона.

110 54 Хе – β -110 55 Cs – β- 110 56 Ва – β–110 57 Za – β–110 58 Се стабильное ядро

235 92 U + 1 0 n → 5 1 0 n

91 36 Кг – β–91 37 Rb – β–91 38 Sr – β–91 39 – β–91 40 Zr стабильное ядро

Данная реакция – это символ торжества НФ. Как ранее утверждалось, что в результате синтеза получаются не элементы, а молекулы, так и Уран – 235 в результате деления показал, что он сплав Се и Zг. Даже теоретически нельзя получить из одного ежа делением двух ежей. Далее идут обычные превращения в нейтронном потоке по НФ (β–излучение).

Это самый яркий пример, который показывает, что различать элемент и молекулу, а тем более сплавы, мы пока не научились. Отсюда и таблица элементов, особенно после Технеция, является таблицей молекул (сплавов)!

Что за молекула U=ХеКг? Почему она обладает такой устойчивостью? Можно ли получить Уран из других составляющих элементов?

Начнем с последнего вопроса. Если Уран рассматривать как сумму относительных масс, то, естественно, его можно получить из многих вариантов слагаемых. Однако для нас они будут все на одно лицо, так как мы их не различаем. Когда с ним производят всевозможные исследования, то он всегда будет на кого–нибудь похож, более нам понятного, как нам кажется. Уран имеет серый металлический цвет, который подсказывает, что иголки его элементов имеют множество противоположно закрученных пятерок и разных ежей с различной закруткой нейтронов. Плотность Урана близка к предельной – 19,04 г/см З – это признак “воздушных структур”. Теплота плавления Урана + 1130°С, а Ксенона – 111,5°С и Криптона – 156,6°С. Молекула из двух элементов Хе и Кг в принципе не может иметь tпл. + 1130°С и тем более создать “воздушную структуру”.

Теперь внимательно посмотрим на конечные продукты реакции Се и Zr.

Церий имеет серебристо белый цвет, tпл. = 804°С, g = 6,77 г/смЗ.

Цирконий – серебристо белый цвет, tпл. = 1852°С, g = 6,52 г/смЗ

Чтобы получить характеристики Урана молекула должна состоять из Церия и Циркония, причем соединение иголок должно создавать не кубическую решетку, а ромбическую. Тогда появится сероватый цвет, увеличится “воздушность решетки” и плотностей tпл. приблизится к средней величине. Закрутка нейтронов Циркония уменьшится, а Церия увеличится. По данной реакции можно записать

U = Се Zr 4 – исходный продукт (сплав Се 20 Zr 80)

Уран получен в результате осадочных связей с узлами соединения в четыре иголки только с правильным ромбическим построением.

Подведем итоги:

Реакция синтеза – это соединение двух и более элементов в молекулу в скоротечном процессе, заменяющем медленный осадочный процесс в природе, с частичным их разрушением.

Реакция деления – это скоротечный разрыв молекулы на два и более элементов с частичным их разрушением. Количество конечных элементов равно количеству исходных в молекуле.

Как видим, с таблицей элементов придется еще помучиться.

Вернемся к ядерной реакции

Здесь Углерод получен в результате атаки α–пакетами Бора. Бор также сидит в клетке Бериллий–жидкость и имеет по три пятерки в иголках. Они оба находятся явно не на своем месте. Смотрим в таблицу Д.И. Менделеева и видим плотность в диапазоне 1,5÷2,5 г/см 3 у 11 элементов (Ве, В, С, Мg, Si, P, S, Cl, Ar, Ca, Cs).

Цезий (Сs) – 55 элемент с длиной иголок согласно относительной массы равной 44 пятеркам при плотности g = 1,959 г/см 3 . По нейтронной логике он должен стоять перед Бором и Углеродом и иметь длину иголок в две пятерки и быть невесомым в земной атмосфере, а этого на практике нет у всех трех элементов.

По анализу карбидов, который не будет приводиться, Углерод находится между Цирконием (Zr) и Ниобием (Nb). Последний (Nb) по таблице превращений садится в последнюю клетку Циркония (Zr).

Длина иголок Углерода должна быть в районе 30 пятерок. Только в этом случае алмаз может получить каналы, пробитые веревками Света как лазерным лучом с толщиной последних до 30 нитей в одной веревке.

Первый способ получения небольших алмазов, пригодных для бриллиантов состоит в следующем:

    В сосуд с водой засыпается мелкодисперсный порошок графита, которому дают спокойно осесть.

    После того, как весь порошок лег на дно, воду убирают наиболее спокойным образом.

    Спрессованную плитку необходимо нагреть ТВЧ (токами высокой частоты) в сжатом состоянии до максимальной температуры, желательно до 3000 о С и выдержать.

    Горячую плитку разместить под лазером, который должен провести свой луч построчно, наподобие кадровой развертки в телевизоре.

    Замедленный и мягкий процесс позволит получить кристаллы толщиной с плитку. При этом можно контролировать и прозрачность, повторяя проход лазерного луча.

    Для получения больших и очень больших алмазов весь процесс на финише необходимо провести еще медленнее. Четыре первых технологических пункта повторяем. Форма графита должна соответствовать форме будущего алмаза.

    Горячий графит помещаем в камеру глубокой заморозки в регулируемый механизм встряхивания и резко снижаем температуру в камере до величины близкой к –260 о С. Достигая тем самым ударного теплового потока из центра заготовки к поверхности, который мягко разрушит часть соединений. После полного охлаждения производим мягкие встряхивания до получения полной прозрачности заготовки. В результате встряхивания наименьшие колебания будет получать структура алмаза, которая полностью связана между собой. Не связанный по вертикали графит будет иметь свободную раскачку, что приведет к обламыванию иголок и открытию каналов для веревок Света.

  • 7.Естествознание как феномен общечеловеческой культуры. Фундамен-тальные естественнонаучные направления: предмет и методы исследо-вания.
  • 8.Причины, по которым знания, накопленные древними цивилизациями Вавилона, Египта, Китая, не могут считаться научными.
  • 9.Природные и социальные катаклизмы, способствовавшие зарождению истоков научного знания в Древней Греции.
  • 10.Принципы и правила истинного познания, заложенные Фалесом Милет-ским. Поиск первоначал и концепция атомистики (Левкипп и Демокрит).
  • 12.Основы учения о движении тел по Аристотелю. Первая система мироздания Аристотеля – Птолемея.
  • 14.Причины угасания интереса к научному знанию, расцвет монотеистических религий, роль арабских и восточных народов в сохранении и развитии древнегреческих знаний
  • 15.Причины разработки критериев научного знания в Средние века. По-следующие вехи в развитии научного метода, его составляющие и его творцы
  • 20.Типы и механизмы фундаментальных взаимодействий в природе.
  • 21.Проявления фундаментальных взаимодействий в механике, термодинамике, ядерной физике, химии, космологии.
  • 22.Проявления фундаментальных взаимодействий и структурные уровни организации материи.
  • 26.Специфика законов природы в физике, химии, биологии, геологии, космологии.
  • 27.Базовые принципы, лежащие в основе картин мироздания от Аристотеля до наших дней.
  • 32.Современная реализация атомистической концепции Левкиппа – Демокрита. Поколения кварков и лептонов. Промежуточные бозоны как переносчики фундаментальных взаимодействий.
  • 34.Строение химических элементов, синтез трансурановых элементов.
  • 35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.
  • 40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.
  • 41.Физические теории, послужившие основой для создания теории «горячей» Вселенной г.А. Гамова.
  • 42.Причины незначительной продолжительности во время начальных «эр» и «эпох» в истории Вселенной.
  • 43.Основные события, происходившие в эру квантовой гравитации. Проблемы «моделирования» этих процессов и явлений.
  • 44.Объяснить с энергетической точки зрения, почему Эпоха адронов предшествовала Эпохе лептонов.
  • 45.Энергии (температуры), при которых произошло отделение излучения от вещества, и Вселенная стала «прозрачной».
  • 46.Строительный материал для формирования крупномасштабной структуры Вселенной.
  • 49.Cвойства черных дыр и их обнаружения себя во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.
  • 51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.
  • 34.Строение химических элементов, синтез трансурановых элементов.

    В 1861 году выдающийся русский химик А.М.Бутлеров

    создал и обосновал теорию химического строения вещества, согласно

    которой свойства веществ определяются порядком связей атомов в

    молекулах и их взаимным влиянием. В 1869 году Д.И.Менделеев открыл9

    один из фундаментальных законов естествознания - периодический закон

    химических элементов, современная формулировка которого такова:

    свойства химических элементов находятся в периодической зависимости от электрического заряда их ядер.

    35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.

    Атомом называется наименьшая частица данного химического элемента. Все существующие в природе атомы представлены в периодической системе элементов Менделеева.

    Атомы соединяются в молекулу за счет химических связей, основанных на электрическом взаимодействии. Число атомов в молекуле может быть разным. Молекула может состоять из одного атома, из двух, трех и даже нескольких сотен атомов.

    Примером двухатомных молекул могут служить СО, NO, O 2 , H 2 , трехатомных – CO 2 , H 2 O, SO 2 , четырехатомных – NH 3 . Таким образом, молекула состоит из одного или нескольких атомов одного или разных химических элементов.

    Можно определить молекулу как наименьшую частицу данного вещества, обладающую его химическими свойствами. Между молекулами любого тела существуют силы взаимодействия – притяжения и отталкивания. Силы притяжения обеспечивают существование тела как целого. Для того чтобы разделить тело на части, необходимо приложить значительные усилия. Существование сил отталкивания между молекулами обнаруживается при попытке сжать тело.

    40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.

    Космология занимается изучением физических свойств Вселенной как целого. В частности, ее целью является создание теории всей охваченной астрономическими наблюдениями области пространства, которую принято называть Метагалактикой.

    Как известно, теория относительности приводит к выводу о том, что присутствие больших масс влияет на свойства пространства - времени. Свойства привычного на евклидова пространства (например, сумма углов треугольника, свойства параллельных линий) вблизи больших масс изменяются или, как говорят, пространство "искривляется". Это искривление пространства, создаваемое отдельными массами (например, звездами), очень мало.

    Так, следует ожидать, что вследствие искривления пространства луч света вблизиСолнца должен изменить свое направление. Точные измерения положений звезд вблизи Солнца но время полных солнечных затмений позволяют уловить этот эффект, правда, на пределе точности измерений.

    Однако суммарное действие гравитирующих (т.е. обладающих притяжением) масс всех галактик и сверхгалактик может вызвать определенную кривизну пространства в целом, что существенным образом повлияет на его свойства, а следовательно, и на эволюцию всей Вселенной.

    Даже сама постановка задачи определения (на основе законов теории относительности) свойств пространства и времени при произвольном распределении масс чрезвычайно трудна. Поэтому обычно рассматриваются некоторые приближенные схемы, называемые моделями Вселенной.

    Самые простые из них основаны на предположении, что вещество во Вселенной в больших масштабах распределено одинаково (однородность), а свойства пространства одинаковы по всем направлениям (изотропность). Такое пространство должно обладать некоторой кривизной, а соответствующие ему модели называются

    однородными изотропными моделями Вселенной.

    Решения эйнштейновских уравнений тяготения для случая однородной изотропной

    модели показывают, что расстояния между отдельными неоднородностями, если

    исключить их индивидуальные хаотические движения (пекулярные скорости), не могут сохраняться постоянными: Вселенная должна либо сжиматься, либо, что

    соответствует наблюдениям, расширяться. Если отвлечься от пекулярных скоростей

    галактик, то скорость взаимного удаления любых двух тел во Вселенной тем больше, чем больше расстояние между ними. Для относительно малых расстояний эта зависимость линейна, причем коэффициентом пропорциональности служит постоянная Хаббла. Из сказанного следует, что расстояние между любой парой тел есть функция времени. Вид этой функции зависит от знака кривизны пространства. Если кривизна отрицательна, то "Вселенная" все время расширяется. При нулевой кривизне, соответствующей; евклидову пространству, расширение происходит с замедлением, причем скорость расширения стремится к нулю. Наконец, расширение "Вселенной", обладающей положительной кривизной, в некоторую эпоху должно смениться сжатием.

    В последнем случае в силу неевклидовой геометрии пространство должно быть

    конечным, т.е. иметь в любой момент времени определенный конечный объем,

    конечное число звезд, галактик и т.д. Однако "границ" у Вселенной, естественно,

    не может быть ни в каком случае.

    Двумерной моделью такого замкнутого трехмерного пространства является

    поверхность раздуваемого шара. Галактики в такой модели изображаются плоскими

    фигурами, начерченными на поверхности. При растяжении шара увеличивается площадь поверхности и расстояние между фигурами. Хотя в принципе такой шар может неограниченно расти, площадь его поверхности конечна в каждый момент времени.

    Тем не менее в его двумерном пространстве (поверхности) границ нет. Кривизна пространства в однородной изотропной модели за-висит от значения средней плотности вещества Если плотность меньше некоторого критического значения, кривизна отрицательна и имеет место первый случай. Второй случай (нулевая кривизна) осуществляется при критическом значении плотности. Наконец, при плотности больше критической ¾ кривизна положительна (третий случай). В процессе расширения абсолютное значение кривизны может меняться, но знак ее

    остается постоянным.

    Критическое значение плотности выражается через постоянную Хаббла Н и гравитационную постоянную f следующим образом: при Н = 55 км/сек × Мпс, r кр = 5 × 10-30 г/см3 Учет всех известных в Метагалактике масс приводит к оценке средней плотности около 5×10-31 г/см3

    Однако это заведомо нижний предел, так как еще не известна масса невидимой среды между галактиками. Поэтому имеющаяся оценка плотности не дает оснований судить о знаке кривизны реального пространства.

    В принципе возможны другие пути эмпирического выбора наиболее реальной модели Вселенной на основе определения красного смещения наиболее далеких объектов (от которых свет, дошедший до нас, был испущен сотни миллионов и миллиарды лет назад) и сопоставления этих скоростей с расстояниями до объектов, найденными другими методами. Фактически таким путем из наблюдении определяется изменение во времени скорости расширения. Современные наблюдения еще не настолько точны, чтобы можно было уверенно судить о знаке кривизны пространства. Можно сказать только, что кривизна пространства Вселенной близка к нулю.

    Постоянная Хаббла, играющая такую важную роль в теории однородной изотропной

    Вселенной, имеет любопытный физический смысл. Чтобы пояснить его, следует

    обратить внимание на то, что обратная величина 1 / H имеет размерность времени и

    равна 1/H = 6×1017 сек или 20 миллиардам лет. Легко сообразить, что это есть

    промежуток времени, необходимый для расширения Метагалактики до современного состояния при условии, что в прошлом скорость расширения не менялась. Однако вопрос о постоянстве этой скорости, о предшествующей и последующей (по отношению к современной) стадиях расширения Вселенной еще плохо изучен.

    Подтверждением того, что Вселенная действительно когда-то находилась в некотором особом состоянии, является открытое в 1965 г. космическое радиоизлучение, названное реликтовым (т.е. остаточным). Его спектр тепловой и воспроизводит кривую Планка для температуры около 3 ёК. [Заметим, что согласно формуле максимум такого излучения приходится на длину волны около 1 мм, близкую к доступному для наблюдений с Земли диапазону электромагнитного спектра.

    Отличительной чертой реликтового излучения является одинаковость его

    интенсивности по всем направлениям (изотропность). Именно этот факт и позволил выделить столь слабое излучение, которое не удавалось связать ни с каким объектом или областью на небе.

    Название "реликтовое" дано потому, что это излучение должно быть остатком

    излучения Вселенной, существовавшего в эпоху большой ее плотности, когда она

    была непрозрачна к собственному излучению. Расчет показывает, что это должно

    было иметь место при плотности r > 10-20 г/см3 (средняя концентрация атомов

    порядка 104 см -3), т.е. когда плотность в миллиард раз превышала современную.

    Поскольку плотность меняется обратно пропорционально кубу радиуса, то, полагая

    расширение Вселенной в прошлом таким же, как и сейчас, получим, что в эпоху

    непрозрачности все расстояния во Вселенной были в 1000 раз меньше. Во столько же раз была меньше и длины волны l . Поэтому кванты, имеющие сейчас длину волны 1мм, ранее имели длину волны около 1 мк, соответствующую максимуму излучения при температуре около 3000 ёК.

    Таким образом, существование реликтового излучения является не только указанием на большую плотность Вселенной в прошлом, но и на ее высокую температуру ("горячая" модель Вселенной).

    О том, была ли Вселенная в еще более плотных состояниях, сопровождавшихся

    значительно более высокими температурами, в принципе можно было бы судить на

    основании аналогичного изучения реликтовых нейтрино. Для них непрозрачность

    Вселенной должна наступить при плотностях r " 107 г/см3 что могло быть только

    на сравнительно очень ранних этапах развития Вселенной. Как и в случае

    реликтового излучения, когда вследствие расширения Вселенная переходит в

    состояние с меньшей плотностью, нейтрино перестают взаимодействовать с остальным веществом, как бы "отрываются" от него, и в дальнейшем претерпевают только космологическое красное смещение, обусловленное расширением. К сожалению, регистрация таких нейтрино, которые в настоящее время должны обладать энергией всего лишь в несколько десятитысячных долей электрон-вольт, вряд ли сможет быть осуществлена в скором времени.

    Космология в принципе позволяет получить представление о наиболее общих

    закономерностях строения и развития Вселенной. Легко понять, какое огромное

    значение имеет этот раздел астрономии для формирования правильного

    материалистического мировоззрения. Изучая законы всей Вселенной в целом, мы еще глубже познаем свойства материи, пространства и времени. Некоторые из них,

    например, свойства реального физического пространства и времени в больших

    масштабах, можно изyчить только в рамках космологии. Поэтому ее результаты имеют важнейшее значение не только для астрономии и физики, которые получают возможность уточнить свои законы, но и для философии, приобретающей обширный материал для обобщения закономерностей материального мира.

    При обстреле урана тепловыми нейтронами из него образуются более легкие элементы с порядковыми номерами 35-65: это заставляло надеяться, что среди обломков будут найдены также изотопы элементов 43 и 61. Если вспомнить состояние вопроса получения элементов 43, 61, а также 85 и 87 в 1930 году, то можно было уловить заметный прогресс. Прежде всего, подтвердилось подозрение, что элементы 43 и 61 являются нестойкими веществами, которые "вымерли". Что касается элементов 85 и 87, то уже довольно давно их признали распавшимися радиоактивными веществами.
    В 1934 году физик Иозеф Маттаух нашел эмпирическое правило, которое позволяет оценить устойчивость ядер изотопов. Согласно правилу Маттауха не может существовать второго устойчивого изотопа, если заряд его ядра отличается только на единицу от заряда ядра известного устойчивого изотопа с тем же массовым числом. Эта закономерность дополняет правило Харкинса, по которому элементы с нечетным порядковым номером (то есть нечетным числом протонов и электронов) распространены на Земле существенно реже, поскольку мала устойчивость их ядер.
    По отношению к элементам 43 и 61 правило Маттауха можно изложить следующим образом. Исходя из их положения в периодической системе, массовое число элемента 43 должно быть около 98, а для элемента 61 - около 147. Однако уже были известны устойчивые изотопы для элементов 42 и 44, а также для элементов 60 и 62 с массами от 94 до 102 и соответственно от 142 до 150. Поскольку второй устойчивый изотоп с тем же массовым числом не может существовать, то элементы 43 и 61 должны иметь только нестабильных представителей. Несомненно, что когда-то элементы 43 и 61 были на Земле в достаточном количестве. Когда возникла наша Солнечная система, то путем сочетания протонов и нейтронов образовались все элементы. Однако за время существования Земли - 4,6 миллиардов лет - их неустойчивые представители постепенно совсем исчезли. Исключение составляют только те радиоактивные элементы, которые могли постоянно пополняться в пределах естественного радиоактивного ряда, ибо их исходные вещества - уран или торий - еще существуют на Земле, благодаря своим периодам полураспада, насчитывающим миллиарды лет. Элементы 43 и 61 к этим естественным радиоактивным рядам не относятся. Лишь в том случае, если имеется долгоживущий изотоп этих элементов, можно было бы надеяться обнаружить его радиохимические следы.
    В то время как некоторые ученые все еще занимались ложными трансуранами, другим исследователям удалось найти вожделенные элементы 43 и 87. Вот история их открытия... В 1936 году Эмилио Сегрэ после женитьбы покинул Ферми и его коллег и уехал в Палермо, прежнюю столицу Сицилии. В тамошнем университете ему предложили кафедру физики. В Палермо, к своему большому сожалению, Сегрэ не смог продолжать изыскания, начатые с Ферми. В университете не было никакого оборудования для радиоактивных исследований. Быстро приняв решение, итальянский ученый поехал в Америку, чтобы ознакомиться с Калифорнийским университетом в Беркли, который славился самым лучшим оборудованием. В то время там находился единственный в мире циклотрон. "Те источники радиоактивности, которые я увидел, были поистине поразительными для человека, работавшего до этого только с Ra-Ве-источниками",- вспоминал физик.
    Особенно заинтересовался Сегрэ отклоняющей пластиной циклотрона. Она должна была направить поток ускоренных частиц в требуемом направлении. За счет столкновений с частицами высокой энергии - ускорялись дейтроны - эта пластина очень сильно разогревалась. Поэтому ее пришлось изготовить из тугоплавкого металла - молибдена. На этот металлический молибден, бомбардируемый дейтронами, и обратил свое внимание гость из Италии. Сегрэ предположил, что из молибдена, 42-го элемента, в результате обстрела дейтронами могли, быть может, образоваться изотопы все еще неизвестного элемента 43. Возможно, по уравнению:
    Мо + D = Х + n
    Природный молибден является смесью шести устойчивых изотопов. Сегрэ предположил: а вдруг один из шести возможных радиоактивных изотопов элемента 43, в которые теоретически мог бы превратиться молибден,- хотя бы один - оказался настолько долгоживущим, чтобы выдержать морское путешествие в Сицилию. Ибо итальянский физик намеревался заниматься поисками элемента 43 только в институте на родине.
    Исследователь пустился в обратный путь, имея в кармане кусок молибденовой пластины от циклотрона в Беркли. В конце января 1937 года он начал исследования при поддержке минералога и химика-аналитика Перрье. Оба, действительно, нашли радиоактивные атомы, которые по химическим свойствам можно было поместить между марганцем и рением. Количества экамарганца, которые вновь искусственно возродились на Земле благодаря исследовательскому гению человека, были невообразимо малы: от 10-10 до 10-12 г 43-го элемента!
    Когда в июле 1937 года Сегрэ и Перрье доложили о синтезе первого искусственного элемента, давно вымершего на Земле - это был день, вошедший в историю. Для элемента 43 позднее нашли очень точное наименование: технеций, происходящее от греческого technetos - искусственный. Можно ли будет когда-либо получить его в весомых количествах и подержать в руках? Вскоре удалось ответить на этот вопрос положительно, когда обнаружилось, что при делении урана возникают изотопы 43 с относительно высоким выходом. Особое внимание привлек изотоп с массовым числом 101 и периодом полураспада 14 мин. Предполагали, что вещество Ферми с периодом полураспада 13 мин, мнимый элемент 93, должен был быть изотопом элемента 43.
    Естественные радиоактивные ряды имеют окончательный вид - в этом никто больше не отваживался сомневаться, в особенности после масс-спектрографической идентификации урана-235 Демпстером. Однако имелось слабое место в ряду уран - актиний. Прошло более двадцати лет с тех пор, как в этом ряду отметили "неточность", которая была почти что предана забвению. Еще в 1913/1914 годах на это несовпадение наткнулись английский химик Крэнстон и австрийские исследователи радиоактивности Майер, Хесс и Панет при изучении актиния. В качестве бета-излучателя актиний, как известно, превращается в радиоактиний, то есть в изотоп тория. Когда ученые изучали процесс превращения, они всегда наблюдали слабое альфа-излучение. Эту остаточную активность (примерно 1 %) обнаруживал и Отто Хан в опытах по получению чистого актиния. "Я не мог решиться на то, чтобы придать значение этой небольшой величине",- сообщил Хан позднее. Он считал, что это, скорее всего, примесь.
    Прошло много лет. Французская ученая Маргарита Перей, сотрудница знаменитого Радиевого института в Париже, снова пошла по этому следу, очень тщательно очистила фракции актиния и в сентябре 1939 года смогла доложить об удачном выделении нового радиоактивного изотопа. Это был столь долго отсутствовавший элемент 87, тот альфа-излучающий побочный продукт, который дает остаточную однопроцентную активность актиния. Мадам Перей нашла разветвление в уже заполненном ряду, ибо изотоп элемента 87 точно так же превращается в актиний X, как и известный радиоактиний. По предложению Перей элемент 87 назвали францием в честь ее родины.
    Правда, химики и по сей день не достигли больших успехов в изучении элемента 87. Ведь все изотопы Франция - короткоживущие и распадаются в течение миллисекунд, секунд или минут. По этой причине элемент поныне остался "неинтересным" для многих химических исследований и практического использования. При необходимости его получают искусственно. Конечно, франций можно "получать" и из естественных источников, но это - сомнительное предприятие: 1 г природного урана содержит только 10[-18] г франция!
    Когда периодическая система была открыта, недоставало 23-х элементов, теперь - только двух: 61- и 85-го. Как шла дальше охота за элементами? Летом 1938 года Эмилио Сегрэ вновь поехал в Беркли. Он намеревался изучить короткоживущие изотопы элемента 43. Безусловно, такие исследования надо было предпринять на месте. Изотопы с малым периодом полураспада не "пережили" бы путь в Италию. Едва прибыв в Беркли, Сегрэ узнал, что возвращение в фашистскую Италию стало для него невозможным из-за расового террора. Сегрэ остался в Беркли и продолжал там свои работы.
    В Беркли с более мощным циклотроном можно было разогнать альфа-частицы до высоких энергий. После преодоления так называемого порога кулоновского взаимодействия эти альфа-частицы были в состоянии проникнуть даже в ядра тяжелых атомов. Теперь Сегрэ увидел возможность превратить висмут, элемент 83, в неизвестный элемент 85. Совместно с американцами Корсоном и Маккензи он бомбардировал ядра висмута альфа-частицами с энергией 29 МэВ, чтобы провести следующий процесс:
    Bi + He = X + 2n
    Реакция осуществилась. Когда исследователи закончили первую совместную работу, 1 марта 1940 года, они лишь осторожно высказали мысль "о возможном получении радиоактивного изотопа элемента 85". Вскоре после этого они были уже уверены: искусственно получен элемент 85, до того как он был найден в природе. Последнее посчастливилось сделать лишь несколько лет спустя англичанке Лей-Смит и швейцарцу Миндеру из института в Берне. Им удалось показать, что элемент 85 образуется в радиоактивном ряду тория в результате побочного процесса. Для открытого элемента они выбрали название англо-гельвеций, которое было раскритиковано как словесная несуразица. Австрийская исследовательница Карлик и ее сотрудник Бернерт вскоре нашли элемент 85 в других рядах естественной радиоактивности, тоже как побочный продукт. Однако право дать наименование этому элементу, встречающемуся лишь в следах, оставалось за Сегрэ и его сотрудниками: теперь его называют астат, что в переводе с греческого означает непостоянный. Ведь самый устойчивый изотоп этого элемента обладает периодом полураспада только 8,3 ч.
    К этому времени профессор Сегрэ пытался также синтезировать элемент 61. Между тем стало ясно, что оба соседа этого элемента по периодической системе, неодим и самарий, слабо радиоактивны. Сначала это казалось удивительным, так как в то время считали, что радиоактивность присуща наиболее тяжелым элементам. Неодим, 60-й элемент, излучал бета-лучи, следовательно, должен был превращаться в элемент 61. Тот факт, что этот неизвестный химический элемент до сих пор не могли выделить, вероятно, объяснялся его быстрым радиоактивным распадом. Что же делать? Здесь выход заключался опять-таки в искусственном получении искомого элемента. Раз элемент 61 нельзя было найти в природе, физики попытались его синтезировать.
    В 1941/42 годах ученые Лоу, Пул, Квилл и Курбатов из Государственного университета в Огайо бомбардировали редкоземельный элемент неодим дейтронами, разогнанными в циклотроне. Они обнаружили радиоактивные изотопы нового элемента, который назвали циклонием. Однако это был лишь след, оставленный на фотопленке.
    Каковы были успехи Эмилио Сегрэ? Он облучал альфа-лучами празеодим - элемент 59. Однако переработка безусловно синтезированных им изотопов элемента 61 оказалась слишком сложной. Выделение их из других редкоземельных элементов не удалось.
    Об одном безрезультатном исследовании пришло известие из Финляндии. Еще в 1935 году химик Эреметсе начал анализировать концентраты смеси оксидов самария и неодима на природное содержание в них 61-го элемента. Для этой цели было переработано несколько тонн апатита.
    Первый этап борьбы за 61-й элемент имел ничейный результат. Нельзя было даже принять предложенное название "циклоний".