Гелий – неоновый лазер. Лазер - лабораторная работа Гелий неоновый лазер

Устройство гелий-неонового лазера

Рабочим телом гелий-неонового лазера служит смесь гелия и неона в пропорции 5:1, находящаяся в стеклянной колбе под низким давлением (обычно около 300 Па). Энергия накачки подаётся от двух электрических разрядников с напряжением около 1000÷5000 вольт (в зависимости от длины трубки), расположенных в торцах колбы. Резонатор такого лазера обычно состоит из двух зеркал - полностью непрозрачного с одной стороны колбы и второго, пропускающего через себя около 1 % падающего излучения на выходной стороне устройства.

Гелий-неоновые лазеры компактны, типичный размер резонатора - от 15 см до 2 м, их выходная мощность варьируется от 1 до 100 мВт.

Принцип действия

Гелий-неоновый лазер. Светящийся луч в центре - электрический разряд.

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Гелий-неоновый лазер" в других словарях:

    гелий-неоновый лазер - helio neono lazeris statusas T sritis radioelektronika atitikmenys: angl. helium neon laser vok. Helium Neon Laser, m rus. гелий неоновый лазер, m pranc. laser à mélange d hélium et néon, m; laser hélium néon, m … Radioelektronikos terminų žodynas

    Лазер с ядерной накачкой это лазерное устройство, возбуждение активной среды которого происходит за счет ядерного излучения (гамма кванты, ядерные частицы, продукты ядерных реакций). Длина волны излучения такого устройства может быть от… … Википедия

    У этого термина существуют и другие значения, см. Лазер (значения). Лазер (лаборатория NASA) … Википедия

    Квантовый генератор, источник мощного оптического излучения (laser аббревиатура выражения light amplification by stimulated emission of radiation усиление света вынужденным излучением). Принцип действия лазера тот же, что и у ранее созданного… … Энциклопедия Кольера

    Источник электромагнитного излучения видимого, инфракрасного и ультрафиолетового диапазонов, основанный на вынужденном излучении (См. Вынужденное излучение) атомов и молекул. Слово «лазер» составлено из начальных букв (аббревиатура) слов… …

    Лазер с газообразной активной средой. Трубка с активным газом помещается в Оптический резонатор, состоящий в простейшем случае из двух параллельных зеркал. Одно из них является полупрозрачным. Испущенная в каком либо месте трубки … Большая советская энциклопедия

    Оптический квант. генератор с газообразной активной средой. Газ, в к ром за счёт энергии внеш. источника (накачки) создаётся состояние с инверсией населённостей двух уровней энергии (верхний и нижний лазерные уровни), помещается в оптический… … Физическая энциклопедия

    Лазер (лаборатория НАСА) Лазер (англ. laser, сокр. от Light Amplification by Stimulated Emission of Radiation «Усиление света с помощью вынужденного излучения») устройство, использующее квантовомеханический эффект вынужденного (стимулированного) … Википедия

В качестве примера рассмотрим устройство и принцип работы гелий-неонового лазера, используемого в нашей лаборатории. Рабочее вещество – атомы неона (Ne ). Используется электрическая накачка: через газоразрядную трубку идет поток электронов; при столкновении быстрых электронов с атомами неона последние возбуждаются и их электроны переходят на верхние энергетические уровни. Однако для атомов неона прямая накачка электронным ударом оказалась недостаточно эффективной. Чтобы ускорить передачу энергии, к неону добавлен гелий (He ).

Схема накачки показана на рис. 4.2. В результате столкновений с электронами атомы гелия переходят с основного уровня на уровень 2 S . Эти возбуждённые атомы гелия сталкиваются с атомами неона и отдают им запасенную энергию. В результате атомы неона переходят с основного уровня на уровень, который близко расположен к уровню2 S гелия. В резуль-тате на
уровне неона создается значительная насе-лённость. В то же время, уровень
населен мало, поскольку он быстро очи-щается благодаря спон-танным переходам на нижележащие уровни. На переходе
возни-кает инверсная населенность. Переход атома неона с верхнего
уровня на ниж-ний уровень
приводит к лазерному излучению с длиной волны
мкм, что соответствует красному свету.

Пусть имеется среда, в которой создана инверсная населенность, т.е. условие (4.7) имеет место. В такой среде вынужденное излучение сильнее, чем поглощение. Поэтому среда будет усиливать проходящий свет с частотойν (длиной волныλ) , соответствующей переходу между уровнями с инверсной населенностью (см. формулу (4.2)). Однако это усиление невелико: в гелий-неоновом лазере свет, пройдя в активной среде путь в1 м, усиливается всего на2 %. Поэтому для получения яркого излучения необходимо, чтобы путь света в активной среде был очень длинным. Это достигается с помощьюоптического резонатора . Активная среда с инверсной населенностью и оптический резонатор – две основные части любого лазера.

На рис. 4.3 схематически изображено устройство гелий-неонового лазера. В середине находится газоразрядная трубка (ГРТ) с активной средой – ге-лий-неоновой смесью. Пар-циальное давление гелия – 1 мм рт.ст. (133 Па), а неона –0,1 мм рт.ст. (13,3 Па). Трубка имеет катодК и анодА . При накаленном катоде и поданном между катодом и анодом высоком напряжении в наполняющих трубку газах может поддерживаться светящийся электрический разряд. Во время разряда падение анодного напряжения в трубке достигает1,5 кВ, ток через трубку достигает30 mA. При прохождении тока через смесь в ней возникает инверсная населенность.

Оптический резонатор – это два высококачественных зеркала З1 иЗ2 (плоские или сферические), одно из которых (З2 ) полупрозрачное. Зеркала установлены у концов газоразрядной трубки параллельно друг другу. Свет, отражаясь от зеркал резонатора, многократно проходит через газоразрядную трубку. В результате путь света в активной среде удлиняется настолько, что усиление света достигает большой величины. Перед началом лазерной генерации в среде имеется некоторое количество спонтанного излучения. Это излучение, отражаясь от зеркал, много раз проходит через активную среду. На каждом проходе оно усиливается за счет вынужденного излучения среды. В итоге возникает яркий лазерный луч, выходящий из полупрозрачного зеркала.

Однако только малая часть спонтанного излучения будет возбуждать лазерную генерацию. Оптический резонатор обладает большой избирательностью: среди спонтанного излучения он отбирает волны с определенным направлением распространения. Действительно, много-кратное отражение будут испытывать только волны, распрост-раняющиеся вдоль оптической оси резонатора. Спонтанное излучение, идущее под углом к оси, уходит из резонатора и в лазерной генерации не участвует. По этой причине лазер генерирует узкий, мало-расходящийся пучок света.

Излучение гелий-неонового лазера эллиптически-поляризованно. Это вызвано тем, что окна газоразрядной трубки установлены под углом Брюстера
. Отражение проходящего света от окон газоразрядной трубки подавляет лазерную генерацию. Устанавливая окна под углом Брюстера, добиваются того, что свет, в котором векторЕ колеблется в плоскости падения, проходит через окно практически без отражения. В результате только такой поляризованный свет генерируется лазером.

Таким образом, из гелий-неонового лазера выходит узкий пучок красного эллиптически-поляризованного света. Этот свет – результат вынужденного излучения. Наряду с вынужденным излучением имеется спонтанное, которое не поляризовано и выходит из лазера во всех направлениях. Это излучение не участвует в лазерной генерации. Спонтанное излучение лазера много слабее вынужденного, яркость его примерно такая же, как у обычной газоразрядной трубки.

Не-Ке лазер, вне всякого сомнения, является наиболее значимым среди| всех лазеров на инертных газах . Генерация здесь осуществляется переходах атома неона, а гелий добавляется в газовую смесь для повыше ния эффективности накачки. Данный лазер излучает на многих длинах? волн, из которых наиболее известна линия с к = 633 нм (красная). Сред& других линий - зеленая на длине волны к = 543 нм и две линии в ИК-диапазо­не с к = 1,15 и 3,39 мкм. Гелий-не - оновый лазер, генерирующий на пе­реходе с длиной волны к = 1,15 мкм» был самым первым газовым лазе* ром, более того, на нем впервые была продемонстрирована непрерывная лазерная генерация . г1

Нарис. 10.1 приведена упрощеШ ная схема энергетических уровней з атомов Не и Ке. Уровни Не обозна чены в соответствии с приближен! ем связи Рассела-Сандерса, где пе] вая цифра указывает на главна квантовое число данного уровне Таким образом, состояние 1х5 отве?*| чает случаю, когда оба электронш атома Не находятся в состоянии 1* с противоположно направленными спинами. Состояния 235 и 2^ отве­чают ситуации, когда один из двух электронов заброшен в состояние 2№ и его спин соответственно паралл* лен или антипараллелен спину дрч гого электрона. С другой сторо:
атомное число неона равно 10, и для обозначения энергетических уровней здесь используется ряд способов, таких как обозначения Пашена или Рака. Однако для простоты ограничимся лишь обозначением электронной конфи­гурации для каждого соответствующего уровня. Таким образом, основное со­стояние неона обозначается как 1822822р6, в то время как показанные на ри­сунке возбужденные состояния соответствуют ситуации, когда один 2р-элек - трон заброшен В возбужденное 8- (38-, 48- ИЛИ 5в) ИЛИ возбужденноер - (3Р" или 4р) состояние. Также следует отметить, что из-за взаимодействия с оставши­мися на 2р-орбиталях пятью электронами эти 8- и р-состояния расщепляются на 4 и 10 подуровней соответственно.

Из рис. 10.1 очевидно, что в атоме Не уровни 23в и 2*в являются близки­ми к резонансу с состояниями 4$ и 5в атома N6. Поскольку уровни 2Зв и 2*в являются метастабильными (переходы в -> в запрещены в электродиполь - ном приближении; и, более того, переход 23в -> 2хв запрещен еще и с точки зрения изменения мультиплетности, т. е. по спину), атомы Не в этих состоя­ниях оказываются весьма эффективным средством для возбуждения 4в - и 58- уровней атомов Ые (посредством резонансного переноса энергии). Было уста­новлено, что в Не-Ке лазере именно этот механизм возбуждения является доминирующим при получении инверсии населенностей, хотя накачка, по­мимо этого, может осуществляться и за счет столкновений электронов с ато­мами Ые. Поскольку 4в - и бв-уровни атома Ие могут быть населены достаточ­но сильно, они хорошо подходят на роль верхних уровней лазерных перехо­дов. Учитывая правила отбора, можно видеть, что возможными переходами здесь являются переходы в р-состояния. Более того, следует отметить, что время релаксации 8-состояний (т8 =100 не) на порядок превышает время ре­лаксации р-состояний (тр = 10 не), таким образом, выполняется условие не­прерывной генерации (7.3.1). Наконец, следует заметить, что вероятность возбуждения из основного состояния на уровни 3р и 4р (за счет электронного удара), вследствие меньших сечений взаимодействия, оказывается значи­тельно меньше, чем соответствующие вероятности возбуждения на уровни 4« и 58. Тем не менее, как будет видно ниже, прямое возбуждение на уровни 3р и 4р также оказывает значительное влияние на работу лазера.

Из сказанного выше следует, что генерацию в неоне можно ожидать меж­ду 58- или 48-уровнями (играющими роль верхних лазерных уровней) и 3р - или 4р-уровнями, которые можно рассматривать как нижние лазерные уров­ни. На рис. 10.1 приведены некоторые наиболее важные лазерные переходы, возникающие между этими состояниями. Для переходов с сильно отличаю­щимися длинами волн (£к > 0,2А,) каждый конкретный переход, на кото­ром будет осуществляться генерация, определяется той длиной волны, на которую «настроен» максимум коэффициента отражения многослойного диэлектрического зеркала (см. рис. 4.9). Лазерные переходы уширены пре­имущественно благодаря эффекту Доплера. Так, например, для красного Не-Ме-перехода (X = 633 нм в вакууме и X = 632,8 нм в воздухе) доплеровское уширение приводит к тому, что ширина этой линии составляет порядка ~1,5 ГГц (см. также пример 2.6). Для сравнения, из выражения (2.5.13) мож­но оценить величину собственного уширения: Аупа1 = 1/(2пх) = 19 МГц, где

Спектроскопические свойства лазерных переходов, а также состав газовой смеси в некоторых наиболее распространенных атомных и ионных газовых лазерах

Тип лазера

На парах меди

Аргоновый

Длина волны [нм]

Сечение перехода

Время жизни верхнего состояния [не]

Время жизни нижнего состояния [не]

Ширина линии [ГГц]

Парциальное давление газовой смеси [мм рт. ст.]

Т-1 = т’1 + Тр1, а и тр - времена жизни 8- ир-состояний соответственно. Ушш рение, связанное со столкновительными процессами, оказывается еще мен&г ше собственного уширения (например, для чистого Ке имеем Дус = 0,6 М1^ при давлениир = 0,5 мм рт. ст.; см. пример 2.2). Некоторые спектроскопиче­ские свойства лазерного перехода, соответствующего длине волны 633 тэд приведены в табл. 10.1.

На рис. 10.2 показана основная конструкция Не-Ые лазера. Разряд щщ исходит между кольцеобразным анодом и большим катодом, имеющим фор^ МУ трубки. При этом положительные ионы сталкиваются с этим катодом. Ц§- большей части длины трубки разряд формируется в капилляре, и только »* этой области достигается высокая инверсия населенностей. Большой общ ем газа, окружающий капилляр, играет роль резервуара для пополнен* Не-Ые-смеси в капилляре. В случае, когда необходимо получить на выхо: лазера поляризованное излучение, внутрь трубки под углом Брюстера ус" навливается пластинка. Зеркала лазера непосредственно впаяны в концы тр^ ки. Чаще всего используется конфигурация резонатора, близкая к полу<
рическои, поскольку она легко юстируется, очень устойчива в плане несоос - ности и без труда обеспечивает генерацию на моде ТЕМ00. Единственный недостаток такой конфигурации состоит в том, что она не полностью исполь­зует объем плазменного разряда, поскольку размер пятна моды на плоском зеркале оказывается значительно меньше, чем на вогнутом. Однако если на рис. 10.2 плоское зеркало расположить слева, то область с меньшим разме­ром пятна для почти полусферической ТЕМ00 моды окажется за пределами капилляра, т. е. в области низкой инверсии.

Одна из наиболее характерных особенностей Не-Ке лазера состоит в том, что его выходная мощность не увеличивается монотонно с увеличением тока разряда, а достигает максимума и затем уменьшается. Поэтому серийно вы­пускаемые Не-Ке лазеры обеспечиваются источником питания, рассчитан­ным только на оптимальный ток. Наличие оптимального значения тока, т. е. плотности тока J, протекающего через капилляр, обусловлено (по крайней мере, для переходов 0,633 и 3,39 мкм) тем, что при высоких плотностях тока дезактивация метастабильных состояний (23в и 21£) атома Не происходит не только за счет столкновений со стенками, но и при сверхупругих столкнове­ниях, например:

Не(215) + е -> Не(11в) + е. (10.2.1)

Поскольку скорость этого процесса пропорциональна плотности элек­тронов Ые, а следовательно и J, полную скорость дезактивации можно за­писать в виде к2 + **7. В этом выражении к2 является константой, характе­ризующей дезактивацию вследствие столкновений со стенками, а к&1 (где &3 - тоже постоянное число) представляет собой скорость процессов, свя­занных со сверхупругими столкновениями (10.2.1). С другой стороны, ско­рость возбуждения можно записать как &1С/, где кх - снова константа. В ста­ционарных условиях можно записать = (к2 + к#1)И*, где - насе­

Ленность основного состояния атома Не, а ЛГ* - населенность возбужденного состояния 215. Равновесное значение населенности уровня 2Х£ задается вы­ражением:

Къ+къГ (10.2.2)

Из которого видно, что при высокой плотности тока возникает насыщение населенности. По­скольку равновесная населенность бв-состояния атома N6 определяется близкорезонансным пе­реносом энергии из 2^-состояния, населенность верхнего лазерного уровня 5в будет также на­сыщаться с ростом плотности тока *1 (рис. 10.3). С другой стороны, экспериментально было обна­ружено, что при отсутствии генерации населен­ность нижнего лазерного уровня (3р или 4р) про­должает линейно расти с увеличением J (рис. 10.3) вследствие непосредственной накачки атомов Ые из основного состояния и каскадных излуча - тельных переходов с верхних лазерных уровней.

Таким образом, по мере увеличения плотности тока разряда, разность насе­ленностей, а с ней и выходная мощность, растет до некоторого оптимального значения, а затем уменьшается.

Помимо указанного оптимального значения плотности тока Не-Ые лазер обладает и другими оптимальными рабочими параметрами. В частности, к ним относятся:

■ оптимальное значение произведения полного давления газа р на величи­ну диаметра трубки В (р!) = 3,6 - 4 мм рт. ст. * мм). Существование опти­мального значения рБ указывает на наличие некоторой оптимальной электронной температуры (см. раздел 6.4.5);

■ оптимальное отношение парциального давления газа Не к давлению га* за Ые (~5:1 для длины волны X = 632,8 нм и -9:1 для X = 1,15 мкм);

■ оптимальное значение диаметра капилляра (Р = 2 мм). Это можно объяс­

Нить следующим образом: при постоянном значении р£>, т. е. при посто­янной электронной температуре, число всех процессов возбуждения (за счет электронного удара) просто сводится к числу атомов, которые могут быть возбуждены; а поскольку как верхний, так и нижний лазерные урот ни заселяются, в конечном счете, за счет электронного удара, их населен ности, а следовательно и усиление лазера, прямо пропорциональны дав­лению р, или величине I)-1, при постоянном произведении р£>. С другой стороны, дифракционные потери лазерного резонатора будут увелищр - ваться при уменьшении параметра I), и, таким образом, можно получите; оптимальное значение диаметра капилляра посредством оптимизации чистого усиления (усиление минус дифракционные потери).)

Согласно зависимости, изображенной на рис. 10.3, мощность Не-Ые лазе*|

Ров обычно невелика (при оптимизации параметров лазера выходная мощности на длине волны X = 633 нм оказывается в пределах 1-10 мВт при длине трубкш от 20 до 50 см, тогда как выходная мощность на зеленом переходе обычно на"; порядок меньше). КПД Не-Ые лазера на всех лазерных переходах оказывается очень низким (< 10_3). Главной причиной столь низкого КПД является мала# величина квантовой эффективности лазера. Действительно, из рис. 10.1 вид - ; но, что каждый элементарный процесс накачки требует затраты энергии около 20 эВ, в то время как энергия лазерного фотона не превышает 2 эВ.)

С другой стороны, наличие очень узкой линии усиления в таком лазере является очевидным преимуществом при получении генерации в одном# довом режиме. Действительно, если длина резонатора достаточно мал! (Ь < 15-20 см), генерацию на одной продольной моде можно с легкостью реа* лизовать путем тонкой подстройки длины резонатора (например, с помощью пьезокерамического устройства), добиваясь, таким образом, совпадения час­тоты моды с центром контура усиления (см. раздел 7.8.2.1). В одномодовом Не-Ке лазере можно обеспечить очень высокую степень стабилизации часто­ты [Ду/у = 10"11 - г-1012] по провалу Лэмба с помощью опорной частоты (на­пример, интерферометра Фабри-Перо с большой величиной резкости), и еще лучшую степень стабилизации можно обеспечить при использовании обра­щенного провала Лэмба с применением поглощающей ячейки, содержащей элемент 12912 (для перехода на длине волны 633 нм).

Генерирующие на красном переходе Не-Ые лазеры до сих пор находят широкое применение во многих областях, где требуется маломощное коге­рентное излучение видимого диапазона (например, для юстировки приборов или при считывании штрих-кодов). Большинство супермаркетов и других торговых точек используют красные Не-Ые лазеры для считывания инфор­мации, содержащейся в штрих-коде каждого продукта. Однако здесь основ­ную конкуренцию Не-Ке лазерам оказывают полупроводниковые лазеры, излучающие в красном диапазоне, которые оказываются более компактны­ми и намного более эффективными. Тем не менее, Не-Ые лазеры зеленого диапазона, благодаря тому что зеленый свет намного лучше воспринимается глазом, все в большей степени используются при юстировке приборов, а так­же в клеточной цитометрии. В последнем случае происходит следующее: от­деленные клетки (например, эритроциты), окрашенные подходящими флуо - рохромами, быстро протекают через капилляр, на который сфокусирован пучок Не-Ые лазера, после чего окрашенные клетки можно регистрировать по соответствующим сигналам рассеяния или флюоресценции. Кроме того, одночастотные Не-Ые лазеры часто используются в метрологических прило­жениях (например, в очень точных интерференционных устройствах изме­рения расстояний) и в голографии.

Газовые гелий-неоновые лазеры (He-Ne лазеры) производства немецкой компании LSS имеют надежную конструкцию, хорошее качество луча и долгий срок службы - до 20 000 часов. Серия гелий-неоновых лазеров представлена большим разнообразием моделей лазеров, одномодовых и мультимодовых, с выходной мощностью от 0,5 до 35 мВт, излучающих в спектральном диапазоне красного, зеленого и желтого. Есть также лазерные трубки с окном Брюстера для образовательных и научных целей.

Все модели комплектуются блоком питания. Газовые ионные аргоновые лазеры серии LGK удовлетворяют внушительному перечню мировых стандартов и имеют сертификаты CDRH, IEC, CSA, CE, TUV, UL. Компания LSS осуществляет эффективную поддержку для работающих по всему миру лазеров собственного производства, предоставляя своим клиентам удобный и быстрый сервис по замене лазерных трубок. Помимо серийных моделей, компания выпускает лазерные системы под индивидуальный заказ.

Гелий-неоновый лазер предназначен для широкого круга приложений таких областей, как сканирующая микроскопия, спектроскопия, метрология, промышленные измерения, позиционирование, выравнивание, направленных, тестирования, проверки кода, научные, фундаментальные и медицинские исследования, а также для образовательных целей.


Технические характеристики лазерных модулей

В таблицах ниже приведены ключевые характеристики лазеров. Для всех пунктов ниже перечисленные характеристики представляют собой общую производительность стандартных моделей. Индивидуальные характеристики могут быть оптимизированы для конкретных приложений. Пожалуйста, свяжитесь с консультантом нашей компании, если у Вас есть особые пожелания.

Технические характеристики лазерных трубок

Технические характеристики блока питания

Все модели газовых ионных аргоновых лазеров серии LGK комплектуются блоком питания производства LSS.

Гелий-неоновый лазер - наряду с диодным или полупроводниковым - относится к числу наиболее часто используемых и самых приемлемых по цене лазеров для видимой области спектра. Мощность лазерных систем такого рода, предназначенных, в основном, для коммерческих целей, находится в диапазоне от 1 мВт до нескольких десятков мВт. Особенно популярны не столь мощные He-Ne-лазеры порядка 1 мВт, которые используют, главным образом, в качестве котировочных устройств, а также для решения иных задач в сфере измерительной техники. В инфракрасном и красном диапазонах гелий-неоновый лазер все чаще вытесняется диодным лазером. He-Ne-лазеры способны, наряду с красными линиями, излучать также оранжевые, желтые и зеленые, что достигается благодаря соответствующим селективным зеркалам.

Схема энергетических уровней

Важнейшие для функции He-Ne-лазеров энергетические уровни гелия и неона представлены на рис. 1. Лазерные переходы осуществляются в атоме неона, причем самые интенсивные линии получаются в результате переходов с длиной волн 633, 1153 и 3391 (см. таблицу 1).

Электронная конфигурация неона в основном состоянии выглядит так: 1s22s22p6 причем первая оболочка (n = 1) и вторая оболочка (n = 2) заполнены соответственно двумя и восемью электронами. Более высокие состояния по рис. 1 возникают в результате того, что здесь имеется 1s22s22p5-оболочка, и светящийся (оптический) электрон возбуждается согласно схеме: 3s, 4s, 5s,..., Зр, 4р,... и т.д. Речь идет, следовательно, об одноэлектронном состоянии, осуществляющим связь с оболочкой. В схеме LS (Рассела - Саундерса) для энергетических уровней неона указано одно-электронное состояние (например, 5s), а также результирующий полный орбитальный момент L (= S, Р, Д...). В обозначениях S, Р, D,... нижний индекс показывает полный орбитальный момент J, а верхний - мультиплетность 2S + 1, например, 5s1P1. Нередко используется чисто феноменологическое обозначение по Пашену (рис. 1). При этом счет подуровней возбужденных электронных состояний ведется от 2 до 5 (для s-состояний) и от 1 до 10 (для p-состояний).


Рис. 1. Схема энергетических уровней He-Ne-лазера. У неона уровни обозначены по Пашену, то есть: 3s2, 3s3, 3s4, 3s5 и т.д.

Таблица 1. Обозначения переходов интенсивных линий He-Ne-лазера

Возбуждение

Активная среда гелий-неонового лазера представляет собой газовую смесь, к которой в электрическом разряде подается необходимая энергия. Верхние лазерные уровни (2s и 2р по Пашену) избирательно заселяются на основе столкновений с метастабильными атомами гелия (23S1, 21S0). При этих столкновениях происходит не только обмен кинетической энергией, но и передача энергии возбужденных атомов гелия атомам неона. Этот процесс называют столкновением второго рода:

Не* + Ne -> Не + Ne* + ΔЕ, (1)

где звездочка (*) символизирует именно возбужденное состояние. Разность энергий составляет в случае возбуждения 2s-уровня: &DeltaE=0,05 эВ. При столкновении имеющаяся разность преобразуется в кинетическую энергию, которая затем распределяется в виде тепла. Для 3s-уровня имеют место идентичные отношения. Такая резонансная передача энергии от гелия к неону и есть основной процесс накачки при создании инверсии населенностей. При этом долгое время жизни метастабильного состояния Не благоприятно сказывается на селективности заселения верхнего лазерного уровня.

Возбуждение He-атомов происходит на основе соударения электронов - либо непосредственно, либо через дополнительные каскадные переходы из вышележащих уровней. Благодаря долгоживущим метастабильным состояниям плотность атомов гелия в этих состояниях весьма велика. Верхние лазерные уровни 2s и 3s могут - с учетом правил отбора для электрических доплеровских переходов - переходить только в нижележащие р-уровни. Для успешного генерирования лазерного излучения крайне важно, что время жизни s-состояний (верхний лазерный уровень) = примерно 100 нc, превышает время жизни р-состояний (нижний лазерный уровень) = 10 нc.

Длины волн

Далее мы более детально рассмотрим важнейшие лазерные переходы, используя рис. 1 и данные из таблицы 1. Самая известная линия в красной области спектра (0,63 мкм) возникает вследствие перехода 3s2 → 2р4. Нижний уровень расщепляется в результате спонтанного излучения в течение 10 нс в 1s-уровень (рис. 1). Последний устойчив к расщеплению благодаря электрическому дипольному излучению, так что для него характерна долгая естественная жизнь. Поэтому атомы концентрируются в данном состоянии, которое оказывается высоконаселенным. В газовом разряде атомы в таком состоянии сталкиваются с электронами, и тогда вновь происходит возбуждение 2р- и 3s-уровней. При этом уменьшается инверсия населенностей, что ограничивает мощность лазера. Опустошение ls-состояния осуществляется в гелий-неоновых лазерах преимущественно из-за столкновений со стенкой газоразрядной трубки, в связи с чем при увеличении диаметра трубки отмечается снижение усиления и понижение кпд. Поэтому на практике диаметр ограничивается примерно 1 мм, что, в свою очередь, приводит к ограничению выходной мощности He-Ne-лазеров несколькими десятками мВт.

Участвующие в лазерном переходе электронные конфигурации 2s, 3s, 2р и Зр расщепляются в многочисленные подуровни. Это приводит, например, к дальнейшим переходам в видимой области спектра, как видно из таблицы 2. При всех видимых линиях He-Ne-лазера квантовая эффективность составляет порядка 10 %, что не так уж много. Схема уровней (рис. 1) показывает, что верхние лазерные уровни располагаются примерно на 20 эВ выше основного состояния. Энергия же красного лазерного излучения составляет всего 2 эВ.

Таблица 2. Длины волн λ, выходные мощности и ширина линий Δ ƒ He-Ne-лазера (обозначения переходов по Пашену)

Цвет λ
нм
Переход
(по Пашену)
Мощность
мВт
Δ ƒ
МГц
Усиление
%/м
Инфракрасный 3 391 3s2 → 3p4 > 10 280 10 000
Инфракрасный 1 523 2s2 → 2p1 1 625
Инфракрасный 1 153 2s2 → 2p4 1 825
Красный 640 3s2 → 2p2
Красный 635 3s2 → 2p3
Красный 633 3s2 → 2p4 > 10 1500 10
Красный 629 3s2 → 2p5
Оранжевый 612 3s2 → 2p6 1 1 550 1.7
Оранжевый 604 3s2 → 2p7
Желтый 594 3s2 → 2p8 1 1 600 0.5
Желтый 543 3s2 → 2p10 1 1 750 0.5

Излучение в инфракрасном диапазоне около 1,157 мкм возникает посредством переходов 2s → 2р. То же самое относится к несколько более слабой линии примерно 1,512 мкм. Обе эти инфракрасных линии находят применение в лазерах коммерческого назначения.

Характерной особенностью линии в ИК-диапазоне при 3,391 мкм является высокое усиление. В зоне слабых сигналов, то есть при однократном прохождении слабых световых сигналов, оно составляет порядка 20 дБ/м. Это соответствует коэффициенту 100 для лазера длиной в 1 метр. Верхний лазерный уровень такой же, как и при известном красном переходе (0,63 мкм). Высокое усиление, с одной стороны, вызвано крайне коротким временем жизни на нижнем 3p-уровне. С другой стороны, это объясняется относительно большой длиной волны и, соответственно, низкой частотой излучения. Обычно соотношение вынужденного и спонтанного излучений увеличивается для низких частот ƒ. Усиление слабых сигналов g, как правило, пропорционально g ~ƒ2.

Без селективных элементов излучение гелий-неонового лазера происходило бы на линии 3,39 мкм, а не в красной области при 0,63 мкм. Возбуждению инфракрасной линии препятствует либо селективное зеркало резонатора, либо поглощение в брюстеровских окнах газоразрядной трубки. Благодаря этому порог генерации лазера может повыситься до уровня, достаточного для излучения 3,39 мкм, так что здесь появляется только более слабая красная линия.

Конструктивное исполнение

Необходимые для возбуждения электроны образуются в газовом разряде (рис.2), который может использоваться с напряжением около 12 кВ при токах от 5 до 10 мА. Типичная длина разряда равна 10см или более, диаметр разрядных капилляров составляет порядка 1 мм и соответствует диаметру излученного лазерного пучка. При увеличении диаметра газоразрядной трубки коэффициент полезного действия понижается, так как для опустошения ls-уровня требуются столкновения со стенкой трубки. Для оптимальной выходной мощности используется полное давление (р) заполнения: р·D = 500 Па·мм, где D есть диаметр трубки. Соотношение в смеси He/Ne зависит от желаемой линии лазерного излучения. Для известной красной линии имеем Не: Ne = 5:l, а для инфракрасной линии около 1,15 мкм - He:Ne=10:l. Важным аспектом представляется также оптимизация плотности тока. Коэффициент полезного действия для линии 633 нм составляет около 0,1 %, поскольку процесс возбуждения в данном случае не слишком эффективен. Срок службы гелий-неонового лазера составляет порядка 20 000 рабочих часов.



Рис. 2. Конструктивное исполнение He-Ne-лазера для поляризованного излучения в мВт-диапазоне

Усиление при таких условиях находится на уровне g=0,1 м-1, так что необходимо использовать зеркала с высокой отражательной способностью. Для выхода лазерного пучка только с одной стороны там устанавливают частично пропускающее (полупрозрачное) зеркало (например, с R = 98 %), а на другой стороне - зеркало с максимально высокой отражательной способностью (~ 100 %). Усиление для других видимых переходов значительно меньше (см. таблицу 2). Для коммерческих целей эти линии удалось получить только в последние годы с помощью зеркал, отличающихся чрезвычайно малыми потерями.

Ранее у гелий-неонового лазера выходные окна газоразрядной трубки фиксировались эпоксидной смолой, а зеркала монтировались снаружи. Это приводило к тому, что гелий диффундировал через клей, и в лазер попадал водяной пар. Сегодня эти окна крепятся методом прямого спая металла со стеклом, что дает снижение утечки гелия примерно до 1 Па в год. В случае небольших лазеров массового производства зеркальное покрытие наносится непосредственно на выходные окна, что значительно упрощает всю конструкцию.

Свойства пучка

Для выбора направления поляризации газоразрядная лампа снабжается двумя наклонно расположенными окнами или, как показано на рис. 2, в резонатор вставляется брюстеровская пластина. Отражательная способность на оптической поверхности обращается в нуль, если свет падает под так называемым углом Брюстера и поляризован параллельно плоскости падения. Таким образом, излучение с таким направлением поляризации без потерь проходит через брюстеровское окно. В то же время отражательная способность компоненты, поляризованной перпендикулярно плоскости падения, достаточно высока и подавляется в лазере.

Коэффициент (степень) поляризации (отношение мощности в направлении поляризации к мощности перпендикулярно этому направлению) составляет у обычных коммерческих систем 1000:1. При работе лазера без брюстеровских пластин с внутренними зеркалами генерируется неполяризованное излучение.

Лазер генерирует обычно на поперечной ТЕМ00-моде (моде низшего порядка), причем образуется сразу несколько продольных (аксиальных) мод. При расстоянии между зеркалами (длине резонатора лазера) L = 30 см межмодовый частотный интервал составляет Δ ƒ` = c/2L = 500 МГц. Центральная частота находится на уровне 4,7·1014 Гц. Поскольку усиление света может произойти в пределах диапазона Δ ƒ = 1500 МГц (доплеровская ширина), при L = 30CM излучается три разных частоты: Δ ƒ/Δ ƒ`= 3. При использовании меньшего расстояния между зеркалами (<= 10см) может быть получена одночастотная генерация. При короткой длине мощность будет весьма незначительной. Если требуется одночастотная генерация и более высокая мощность, можно использовать лазер большей длины и с оснащением частотно-селективными элементами.

Гелий-неоновые лазеры около 10 мВт часто находят применение в интерферометрии или голографии. Длина когерентности подобных лазеров серийного производства составляет от 20 до 30см, что вполне достаточно для голографии небольших объектов. Более значительные длины когерентности получаются при использовании серийных частотно-селективных элементов.

При изменении оптического расстояния между зеркалами в результате теплового или иного воздействия происходит сдвиг аксиальных собственных частот резонатора лазера. При одночастотной генерации здесь не получается стабильной частоты излучения - она бесконтрольно перемещается в диапазоне ширины линии 1500 МГц. Путем дополнительного электронного регулирования может быть достигнута стабилизация частоты как раз по центру линии (у коммерческих систем возможна стабильность частоты в несколько МГц). В исследовательских лабораториях удается иногда стабилизировать гелий-неоновый лазер на диапазон менее 1 Гц.

Путем использования подходящих зеркал разные линии из таблицы 4.2 могут возбуждаться для генерации лазерного излучения. Чаще всего находит применение видимая линия около 633 нм с типовыми мощностями в несколько милливатт. После подавления интенсивной лазерной линии порядка 633 нм благодаря использованию селективных зеркал или призм в резонаторе могут появиться другие линии в видимом диапазоне (см. таблицу 2). Однако выходные мощности этих линий составляют всего 10 % от выходной мощности интенсивной линии или даже меньше.

Гелий-неоновые лазеры коммерческого назначения предлагаются с разными длинами волн. Помимо них имеются еще лазеры, генерирующие на многих линиях и способные излучать волны множества длин в самых разных комбинациях. В случае перестраиваемых He-Ne-лазеров предлагается, поворачивая призму, выбрать требуемую длину волны.