Как растут бактерии. Как происходит размножение бактерий? Размножение бактерий в жидкой питательной среде


Размножение микроорганизмов - бинарное деление одноклеточных микроорганизмов (бактерий, риккетсий, простейших, дрожжей), в результате которого образуются две новые дочерние полноценные особи, наделенные генетической информацией материнской клетки. Дрожжеподобные грибы могут размножаться почкованием, спорами; плесневые грибы и актиномицеты размножаются обычно спорами.

Бактерии

Размножаются простым поперечным делением. Бактерии являются гаплоидными клетками. В состав бактериальной клетки входит капсула, клеточная стенка, цитоплазматическая мембрана, цитоплазма, где располагаются мезосомы, рибосомы, нуклеоид, и включения. Некоторые бактериальные клетки имеют жгутики и образуют споры. В отличие от животных клеток такие внутренние структуры бактериальной клетки, как мезосомы, рибосомы, нуклеоид, не имеют мембран, отграничивающих их от цитоплазмы. По способу питания бактерий делят на автотрофов и гетеротрофов, по способу дыхания - на аэробов и анаэробов.

Актиномицеты

Размножаются спорами и поперечным делением (отшнуровыванием) гиф. Занимают промежуточное положение между грибами и бактериями. Среди лучистых грибов сеть патогенные виды - возбудители актиномикозов. Многие актиномицеты являются продуцентами антибиотиков. (см. Антибиотики). В «Определителе» Берджи актиномицеты названы стрептомицетами.

Дрожжи

Существует 2 вида размножения дрожжей - вегетативное (бесполое) и половое с образованием спор. У большинства видов дрожжей вегетативное размножение осуществляется почкованием, редко делением (Schizosaccharomyces). Аспорогенные. дрожжи размножаются только почкованием. Половое размножение происходит при неблагоприятных условиях, когда дрожжи перестают почковаться и превращаются в сумки (аски) со спорами - аскоспоры. Половой процесс заключается в копуляции (слиянии) 2 вегетативных клеток путем сближения их и образования копуляционного канала, в котором происходит слияние частей плазмы и ядра клеток, называемое кариогамией, с образованием диплоидной зиготы, представляющей 2 клетки, соединенные копуляционным каналом. Редукционное деление, или мейоз, сопровождаемое уменьшением числа хромосом вдвое, происходит сразу, без полового процесса, и зигота превращается в аск с 4 гаплоидными спорами, поэтому вегетативное поколение таких спор гаплоидно. Споры прорастают без копуляции. Так происходит размножение у дрожжей Zygosaccharomyces. У дрожжей Saccharomyces половой процесс происходит при слиянии спор или проросших из них клеток с образованием диплоидной зиготы, которая сразу начинает почковаться, образуя диплоидное потомство. Мейоз происходит непосредственно перед образованием спор.

Плесневые грибы

У Грибов различают вегетативное, половое и бесполое размножение.

Вегетативное размножение может осуществляться при отделении от основной массы мицелия его частей, которые могут развиваться самостоятельно, а так же путем почкования мицелия или отдельных клеток у дрожжевых грибов.

Половое размножение состоит в слиянии половых клеток, в результате чего возникает зигота. Бесполое размножение осуществляется при помощи специальных образований, называемых спорами. Споры могут развиваться внутри специальных споровместилищ или на концах особых выростов мицелия – конидиеносцах. Основной способ размножения плесневых грибов – при помощи спор. Плесень размножается невероятно быстро.

В обыкновенной хлебной плесени можно различить маленькие чёрные точки - спорангии, в которых образуются споры. В одном спорангии содержится до 50.000 спор, каждая из которых способна воспроизвести сотни миллионов новых спор всего за несколько дней! А если условия благоприятные, плесень быстро появится на книге, обуви или на упавшем дереве в лесу.



Размножение бактерий путем деления — самый распространенный метод увеличения численности микробной популяции. После деления происходит рост бактерий до исходного размера, для чего необходимы определенные вещества (факторы роста).

Способы размножения бактерий различны, но для большинства их видов присуща форма бесполового размножения способом деления. Способом почкования бактерии размножаются исключительно редко. Половое размножение бактерий присутствует в примитивной форме.

Рис. 1. На фото бактериальная клетка в стадии деления.

Генетический аппарат бактерий

Генетический аппарат бактерий представлен единственной ДНК — хромосомой. ДНК замкнута в кольцо. Хромосома локализована в нуклеотиде, не имеющем мембраны. В бактериальной клетке имеются плазмиды.

Нуклеоид

Нуклеоид является аналогом ядра. Он расположен в центре клетки. В нем локализована ДНК — носитель наследственной информации в свернутом виде. Раскрученная ДНК достигает в длину 1 мм. Ядерное вещество бактериальной клетки не имеет мембраны, ядрышка и набора хромосом, не делится митозом. Перед делением нуклеотид удваивается. Во время деления число нуклеотидов увеличивается до 4-х.

Рис. 2. На фото бактериальная клетка на срезе. В центральной части виден нуклеотид.

Плазмиды

Плазмиды представляют собой автономные молекулы свернутые в кольцо двунитевой ДНК. Их масса значительно меньше массы нуклеотида. Несмотря на то, что в ДНК плазмид закодирована наследственная информация, они не являются жизненно важными и необходимыми для бактериальной клетки.

Рис. 3. На фото бактериальная плазмида.

Этапы деления

После достижения определенных размеров, присущих взрослой клетке, запускаются механизмы деления.

Репликация ДНК

Репликация ДНК предшествует клеточному делению. Мезосомы (складки цитоплазматической мембраны) удерживают ДНК до тех пор, пока процесс деления (репликации) не завершится.

Репликация ДНК осуществляется с помощью ферментов ДНК-полимеразами. При репликации водородные связи в 2-х спиральной ДНК разрываются, в результате чего из одной ДНК образуются две дочерние односпиральные. В последующем, когда дочерние ДНК заняли свое место в разделенных дочерних клетках, происходит их восстановление.

Как только репликация ДНК завершилась, в результате синтеза появляется перетяжка, разделяющая клетку пополам. Вначале делению подвергается нуклеотид, затем цитоплазма. Синтез клеточной стенки завершает деление.

Рис. 4. Схема деления бактериальной клетки.

Обмен участками ДНК

У сенной палочки процесс репликации ДНК завершается обменом участками 2-х ДНК.

После деления клетки образуется перемычка, по которой ДНК одной клетки переходит в другую. Далее обе ДНК сплетаются. Некоторые отрезки обоих ДНК слипаются. В местах слипания происходит обмен отрезками ДНК. Одна из ДНК по перемычке уходит обратно в первую клетку.

Рис. 5. Вариант обмена ДНК у сенной палочки.

Типы делений бактериальных клеток

Если клеточное деление опережает процесс разделения, то образуются многоклеточные палочки и кокки.

При синхронном клеточном делении образуются две полноценные дочерние клетки.

Если нуклеотид делится быстрее самой клетки, то образуются многонуклеотидные бактерии.

Способы разделения бактерий

Деление с помощью разламывания

Деление с помощью разламывания характерно для сибиреязвенных бацилл. В результате такого деления клетки переламываются в местах сочленения, разрывая цитоплазматические мостики. Далее отталкиваются друг от друга, образуя цепочки.

Скользящее разделение

При скользящем разделении после деления клетка обосабливается и как бы скользит по поверхности другой клетки. Данный способ разделения характерен для некоторых форм эшерихий.

Секущееся разделение

При секущемся разделении одна из разделившихся клеток свободным концом описывает дугу круга, центром которого является точка ее контакта с другой клеткой, образуя римскую пятерку или клинопись (коринебактерии дифтерии, листерии).

Рис. 6. На фото бактерии палочковидной формы, образующие цепочки (сибиреязвенные палочки).

Рис. 7. На фото скользящий способ разделения кишечных палочек.

Рис. 8. Секущийся способ разделения коринебактерий.

Вид скоплений бактерий после деления

Скопления делящихся клеток имеют разнообразную форму, которая зависит от направления плоскости деления.

Шаровидные бактерии располагаются по одному, по двое (диплококки), пакетами, цепочками или как гроздья винограда. Палочковидные бактерии — цепочками.

Спиралевидные бактерии — хаотично.

Рис. 9. На фото микрококки. Они круглые, гладкие, имеют белую, желтую и красную окраску. В природе микрококки распространены повсеместно. Живут в разных полостях человеческого организма.

Рис. 10. На фото бактерии диплококки — Streptococcus pneumoniae.

Рис. 11. На фото бактерии сарцины. Кокковидные бактерии соединяются в пакеты.

Рис. 12. На фото бактерии стрептококки (от греческого «стрептос» — цепочка). Располагаются цепочками. Являются возбудителями целого ряда заболеваний.

Рис. 13. На фото бактерии «золотистые» стафилококки. Располагаются, как «гроздья винограда». Скопления имеют золотистую окраску. Являются возбудителями целого ряда заболеваний.

Рис. 14. На фото извитые бактерии лептоспиры — возбудители многих заболеваний.

Рис. 15. На фото палочковидные бактерии рода Vibrio.

Скорость деления бактерий

Скорость деления бактерий крайне высока. В среднем одна бактериальная клетка делится каждые 20 минут. В течение только одних суток одна клетка образует 72 поколения потомства. Микобактерии туберкулеза делятся медленно. Весь процесс деления занимает у них около 14 часов.

Рис. 16. На фото отображен процесс деления клетки стрептококка.

Половое размножение бактерий

В 1946 году учеными было обнаружено половое размножение в примитивной форме. При этом гаметы (мужские и женские половые клетки) не образуются, однако некоторые клетки обмениваются генетическим материалом (генетическая рекомбинация ).

Передача генов осуществляется в результате конъюгации — однонаправленного переноса части генетической информации в виде плазмид при контакте бактериальных клеток.

Плазмиды представляют собой молекулы ДНК небольшого размера. Они не связаны с геномом хромосом и способны удваиваться автономно. В плазмидах содержаться гены, которые повышают устойчивость бактериальных клеток к неблагоприятным условиям внешней среды. Бактерии часто передают эти гены друг другу. Отмечается так же передача генной информации бактериям другого вида.

При отсутствии истинного полового процесса именно конъюгация играет огромную роль при обмене полезными признаками. Так передается способность бактерий проявлять лекарственную устойчивость. Для человечества особо опасным является передача устойчивости к антибиотикам между болезнетворными популяциями.

Рис. 17. На фото момент конъюгации двух кишечных палочек.

Фазы развития бактериальной популяции

При посевах на питательную среду развитие бактериальной популяции проходит несколько фаз.

Исходная фаза

Исходная фаза — это период от момента посева до их роста. В среднем исходная фаза длится 1 — 2 часа.

Фаза задержки размножения

Это фаза интенсивного роста бактерий. Ее длительность составляет около 2-х часов. Она зависит от возраста культуры, периода приспособления, качества питательной среды и др.

Логарифмическая фаза

В эту фазу отмечается пик скорости размножения и увеличения бактериальной популяции. Ее длительность составляет 5 — 6 часов.

Фаза отрицательного ускорения

В эту фазу отмечается спад скорости размножения, уменьшается количество делящихся и увеличивается число погибших бактерий. Причина отрицательного ускорения — истощение питательной среды. Ее длительность составляет около 2-х часов.

Стационарная фаза максимума

В стационарную фазу отмечается равное количество погибших и вновь образованных особей. Ее длительность составляет около 2-х часов.

Фаза ускорения гибели

В эту фазу прогрессивно нарастает количество погибших клеток. Ее длительность составляет около 3-х часов.

Фаза логарифмической гибели

В эту фазу клетки бактерий отмирают с постоянной скоростью. Ее длительность составляет около 5-и часов.

Фаза уменьшения скорости отмирания

В эту фазу оставшиеся живыми клетки бактерий переходят в состояние покоя.

Рис. 18. На рисунке отображена кривая роста бактериальной популяции.

Рис. 19. На фото колонии синегнойной палочки сине-зеленого цвета, колонии микрококков желтого цвета, колонии Bacterium prodigiosum кроваво-красного цвета и колонии Bacteroides niger черного цвета.

Рис. 20. На фото колонии бактерий. Каждая колония — потомство одной-единственной клетки. В колонии число клеток исчисляется миллионами. вырастает колония за 1 — 3 суток.

Деление магниточувствительных бактерий

В 1970-х годах были открыты бактерии, обитающие в морях, которые обладали чувством магнетизма. Магнетизм позволяет этим удивительным существам ориентироваться по линиям магнитного поля Земли и находить серу, кислород и другие, так необходимые ей вещества. Их «компас» представлен магнитосомами, которые состоят из магнита. При делении магниточувствительные бактерии делят свой компас. При этом перетяжки при делении становится явно недостаточно, поэтому бактериальная клетка сгибается и делает резкий перелом.

Рис. 21. На фото момент деления магниточувствительной бактерии.

Рост бактерий

Вначале деления бактериальной клетки две молекулы ДНК расходятся в разные концы клетки. Далее клетка делится на две равноценные части, которые отделяются друг от друга и увеличиваются до исходного размера. Скорость деления многих бактерий составляет в среднем 20 — 30 минут. В течение только одних суток одна клетка образует 72 поколения потомства.

Масса клеток в процессе роста и развития быстро поглощает питательные вещества из окружающей среды. Этому способствуют благоприятные факторы внешней среды — температурный режим, достаточное количество питательных веществ, необходимая pH среды. Для клеток аэробов необходим кислород. Для анаэробов он представляет опасность. Однако безграничное размножение бактерий в природе не происходит. Солнечный свет, сухой воздух, недостаток пищи, высокая температура окружающей среды и другие факторы губительно действуют на бактериальную клетку.

Рис. 22. На фото момент деления клетки.

Факторы роста

Для роста бактерий необходимы определенные вещества (факторы роста), часть из которых синтезируется самой клеткой, часть поступает из окружающей среды. Потребность в факторах роста у всех бактерий разная.

Потребность в факторах роста является постоянным признаком, что позволяет использовать его для идентификации бактерий, подготовке питательных сред и использовать в биотехнологии.

Факторы роста бактерий (бактериальные витамины) — химические элементы, большинством из которых являются водорастворимые витамины группы В. В эту группу входят так же гемин, холин, пуриновые и пиримидиновые основания и другие аминокислоты. При отсутствии факторов роста наступает бактериостаз.

Бактерии используют факторы роста в минимальных количествах и в неизменном виде. Ряд химических веществ этой группы входят в состав клеточных ферментов.

Рис. 23. На фото момент деления палочковидной бактерии.

Важнейшие бактериальные факторы роста

  • Витамин В1 (тиамин) . Принимает участие в углеводном обмене.
  • Витамин В2» (рибофлавин) . Принимает участие в окислительно-восстановительных реакциях.
  • Пантотеновая кислота является составной частью кофермента А.
  • Витамин В6 (пиридоксин) . Принимает участие в обмене аминокислот.
  • Витамины В12 (кобаламины — вещества, содержащие кобальт). Принимают активное участие в синтезе нуклеотидов.
  • Фолиевая кислота . Некоторые ее производные входят в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот.
  • Биотин . Участвует в азотистом обмене, а также катализирует синтез ненасыщенных жирных кислот.
  • Витамин РР (никотиновая кислота). Участвует в окислительно-восстановительных реакциях, образовании ферментов и обмене липидов и углеводов.
  • Витамин Н (парааминобензойная кислота). Является фактором роста многих бактерий, в том числе населяющих кишечник человека. Из парааминобензойной кислоты синтезируется фолиевая кислота.
  • Гемин . Является составной частью некоторых ферментов, которые принимают участие в реакциях окислениях.
  • Холин . Принимает участие в реакциях синтеза липидов клеточной стенки. Является поставщиком метильной группы при синтезе аминокислот.
  • Пуриновые и пиримидиновые основания (аденин, гуанин, ксантин, гипоксантин, цитозин, тимин и урацил). Вещества необходимы главным образом в качестве компонентов нуклеиновых кислот.
  • Аминокислоты . Эти вещества являются составляющими белков клетки.

Потребность в факторах роста некоторых бактерий

Ауксотрофы для обеспечения жизнедеятельности нуждаются в поступлении химических веществ из вне. Например, клостридии не способны синтезировать лецитин и тирозин. Стафилококки нуждаются в поступлении лецитина и аргинина. Стрептококки нуждаются в поступлении жирных кислот — компонентов фосфолипидов. Коринебактерии и шигеллы нуждаются в поступлении никотиновой кислоты. Золотистые стафилококки, пневмококки и бруцеллы нуждаются в поступлении витамина В1. Стрептококки и бациллы столбняка — в пантотеновой кислоте.

Прототрофы самостоятельно синтезируют необходимые вещества.

Рис. 24. Разные условия окружающей среды по-разному влияют на рост колоний бактерий. Слева — стабильный рост в виде медленно расширяющегося круга. Справа — быстрый рост в виде «побегов».

Изучение потребности бактерий в факторах роста позволяет ученым получать большую микробную массу, так необходимую при изготовлении антимикробных препаратов, сывороток и вакцин.

Подробно о бактерияx читай в статьях:

Размножение бактерий является механизмом повышения числа микробной популяции. Деление бактерий — основной способ размножения. После деления бактерии должны достигнуть размеров взрослых особей. Рост бактерий происходит путем быстрого поглощения питательных веществ их окружающей среды. Для роста необходимы определенные вещества (факторы роста), часть из которых синтезирует сама бактериальная клетка, часть поступает из окружающей среды.

Изучая рост и размножение бактерий, ученые постоянно открывают полезные свойства микроорганизмов, использование которых в повседневной жизни и на производстве ограничивается только их свойствами.

Общие положения

Определение 1

Размножение – процесс воспроизведения себе подобных организмов, ведущий к увеличению бактериальных клеток в популяции.

Для бактерий характерны следующие виды размножения:

  • бинарное деление на две части - деление происходит симметрично относительно поперечной и продольной оси, образуются одинаковые дочерние клетки
  • почкование - вариант бинарного деления, образующаяся на одном из полюсов почка растет до размеров материнской клетки и отделяется; симметрия присутствует только относительно продольной оси
  • множественное деление - клетка претерпевает ряд последовательных быстрых бинарных делений внутри фибриллярного слоя материнской клетки, что приводит к образованию баеоцитов – мелких клеток, количество которых колеблется от 4 до 1000, в результате разрыва клеточной стенки материнского организма баеоциты выходят наружу;
  • размножение спорами ;
  • путем фрагментации клеток , имеющих нитевидную форму;
  • конъюгация (половой процесс, обмен клетками генетическим материалом);
  • трансформация (перенос «голой» ДНК);
  • трансдукция (перенос генетической информации при помощи бактериофагов).

Репликация бактериальной хромосомной ДНК

Репликация хромосомы в бактериальной клетке происходит по полуконсервативному типу, что приводит к удвоению ДНК нуклеоида – бактериального ядра. При этом типе репликации двухспиральная молекула ДНК раскрывается, а каждая отдельная нить ДНК достраивается комплементарной нитью.

Процесс репликации ДНК происходит от начальной точки ori и катализируется ДНК-полимеразами. В области ori хромосома клетки бактерии связана с цитоплазматической мембраной. В первую очередь происходит деспирализация (раскручивание) двойной цепи ДНК. Образуется репликативная вилка, представленная двумя разветвленными цепями. Одна цепь, достраиваясь связывает нуклеотиды от 5 - к 3 -концу, а у второй достраивание происходит посегментно.

Репликация ДНК включает следующие этапы:

  • инициация;
  • элонгация (рост цепи);
  • терминация.

В результате репликации образуются две хромосомы, которые прикрепляются к цитоплазматической мембране или ее производным, и удаляются друг от друга мере увеличения клетки. После образования перегородки ил перетяжки деления происходит окончательное разъединение хромосом. Перегородки деления разрушают аутолитические ферменты.

Размножение бактерий в жидкой питательной среде

Замечание 1

Если бактерии засеяны в определенный объем питательной среды, то размножаясь и потребляя питательные вещества, они ведут к истощению этой среды, что, в свою очередь, приводит к прекращению роста микроорганизмов.

Культивирование микроорганизмов в такой системе является периодическим культивированием, а культуру бактерий называют непрерывной культурой.

Рост культуры на жидкой питательной среде может быть:

  • придонным:
  • диффузным;
  • поверхностным.

Рост периодической культуры можно разделить на несколько фаз. Эти фазы можно показать в виде отрезков кривой размножения микроорганизмов (рисунок 1).

  • Лаг-фаза. Период между посевом бактерий и началом процесса размножения. Длится $4-5$часов.Микроорганизмы увеличиваются в объеме и готовятся к делению. Увеличивается количество белка, нуклеиновых кислот и других соединений.
  • Фаза логарифмического роста . Период интенсивного деления клеток. Продолжительность $5-6$ часов. Клетки бактерий наиболее чувствительны.
  • Фаза стационарного роста (максимальной концентрации бактерий). Количество жизнеспособный клеток постоянно, наблюдается М-концентрация (максимальная концентрация). Продолжительность фазы зависит от вида и особенностей бактерий, культивирования.
  • Фаза гибели бактерий . В условиях истощения питательной среды, а также накопления продуктов метаболизма происходит отмирание бактерий.

Продолжительность от $10$ часов до нескольких недель.

Размножение бактерий на плотной питательной среде

При росте на плотных питательных средах бактерии формируют изолированные колонии с ровными или неровными краями округлой формы, разного цвета и консистенции. Цвет питательной среды зависит от пигмента бактерии. Среди микроорганизмов наиболее распространенными пигментами являются каротины, меланины, ксантофиллы. Многие пигменты обладают антибиотикоподобным, антимикробным действием.

Замечание 2

Форма, цвет, вид колоний на плотных питательных средах учитываются при идентификации микроорганизмов, отборе колоний для создания чистых культур.

Всё живое и неживое обязано подчиняться законам физики — в том числе второму началу термодинамики, гласящему, что энтропия изолированной системы не может уменьшаться. На первый взгляд, высокоорганизованные многоклеточные организмы существуют вопреки этому закону «неубывания беспорядка», но на самом деле тепло, выделяемое ими, увеличивает энтропию вселенной, и второй закон термодинамики не нарушается. Тем не менее в этой области остается множество вопросов. Сколько тепла должна выделять клетка во внешнее пространство, чтобы компенсировать свою внутреннюю упорядоченность с точки зрения термодинамики? Как близко подходят клетки к пределу, установленному вторым законом термодинамики?

Джереми Ингланд (Jeremy England), физик из MIT, смоделировал процесс размножения кишечной палочки (E.coli). Приняв в расчет устройство бактериальной клетки, особенности воспроизводства и скорость роста, ученый рассчитал минимальное количество тепла, которое E. coli должна выделять в окружающее пространство, чтобы не нарушать второй закон термодинамики. Фактическое значение теплоотдачи оказалось примерно того же порядка, что и теоретическое: бактерия «обогревала» окружающую среду всего в шесть раз сильнее, чем ей велит термодинамика. Для биологической системы это довольно высокая эффективность.

Ингланд использовал метод статистический механики (расчет вероятности различных вариантов взаимного расположения атомов и молекул), чтобы смоделировать 20-минутный процесс размножения E. coli, в ходе которого бактерия потребляет много пищи, преобразует её в энергию, перестраивает и упорядочивает свои молекулы (в том числе белки и ДНК), а в конечном итоге делится на две клетки.

Чтобы исследовать термодинамику этого процесса, Ингланд решил смоделировать обратную ситуацию, когда две клетки сливаются в одну. Это событие настолько маловероятно, что в природе, скорее всего, так никогда и не случится. Численно эту вероятность можно оценить, рассчитав вероятности обращения вспять всех химических реакций, необходимых для деления бактериальной клетки. Наиболее распространенная из таких реакций — образование пептидных связей. Вероятность того, что эта реакция самопроизвольно пойдет в обратном направлении, настолько мала, что в некоторой абстрактной «вечной» клетке это событие будет происходить лишь раз в 600 лет. А спонтанного разрыва всех 1,6 млрд пептидных связей, присутствующих в бактериальной клетке, пришлось бы ждать намного дольше. Рассчитав энергию, необходимую для разрушения этих связей, и время, за которое этот процесс мог бы пройти самопроизвольно, Ингланд теоретические параметры и обратного процесса — деления клетки с образованием полного набора пептидных связей.

Оказалось, что расчетная величина составляет чуть больше одной шестой от того количества теплоты, которое бактерия выделяет в окружающее пространство в единицу времени. Теоретически бактерии могли бы размножаться и быстрее, но Ингланд считает, что они вряд ли будут эволюционировать, увеличивая эффективность воспроизводства, — у бактерий есть множество других «внутриклеточных задач». А вот для специалистов в области синтетической биологии расчеты Ингланда могут оказаться весьма интересными: они демонстрируют возможность создания микроорганизмов, которые делятся быстрее своих немодифицированных собратьев.

Ингланд считает, что его работа также косвенно указывает на причины, по которым именно ДНК, а не РНК эволюционировала в качестве носителя генетической информации: связи в ДНК более прочные и менее подвержены спонтанному разрушению. С другой стороны, «термодинамический барьер» для организмов, полагающихся на РНК, ниже. Они могут размножаться быстрее, эволюционируя и используя все имеющиеся ресурсы.

Рост бактерий происходит в результате множества взаимосвязанных биохимических реакций , осуществляющих синтез клеточного материала. У бактерий различают индивидуальный рост бактериальной клетки и рост бактерий в популяции.

Об индивидуальном росте судят по увеличению размеров отдельных особей. Скорость роста зависит от внешних условий и физиологического состояния самой клетки. При постоянных условиях рост осуществляется с постоянной скоростью. Палочковидные бактерии растут преимущественно в направлении длинной оси, кокки растут равномерно во всех направлениях. В промежутке между клеточными делениями бактерии имеют большие размеры, чем сразу после деления.

Размножение бактерий

Наиболее часто бактерии размножаются путем бинарного деления, когда из одной клетки образуется две, каждая из которых вновь делится. Процессу деления всегда предшествует репликация (удвоение) ДНК . Существует два типа деления - деление перетяжкой (перешнуровывание) и с помощью поперечной перегородки (рисунок А.7) .

Деление перетяжкой (констрикция) сопровождается сужением клетки в месте ее деления, и в этом процессе принимают участие все слои клеточных оболочек. Выпячивание оболочек внутрь клетки все более ее сужает и, наконец, делит на две. Это деление присуще грамотрицательным бактериям . Деление с образованием поперечной перегородки присуще грамположительным бактериям. Однако у некоторых групп бактерий отмечена смена способов деления (тионовые бактерии, микобактерии). У шаровидных бактерий может образовываться несколько поперечных перегородок (тетракокки, сарцины). Почкование убактерий является разновидностью бинарного деления. Этот способ размножения присущ бактериям, имеющим диморфные или полиморфные клеточные циклы. Почкующимся бактериям присуща полярность клеток. Некоторые бактерии размножаются с помощью экзоспор (но не эндоспор!), некоторые - фрагментами гиф (актиномицеты). У некоторых бактерий имеются половые ворсинки, или F-пили.

Период от деления до деления называется клеточным циклом . Различают несколько типов вегетативного клеточного цикла: мономорфный - образуется только один морфологический тип клеток (например, бациллы), диморфный - два морфологических типа клеток, полиморфный - несколько (актиномицеты). При диморфном и полиморфном циклах различают дочерние и материнские клетки.

Бактерии характеризуются высокой скоростью размножения. Например, в благоприятных условиях кишечная палочка делится каждые 20-30 мин, за сутки это дает 2 72 , т.е. 72 поколения. В условиях, исключающих гибель, эта биомасса составит 4720 т. Скорость размножения зависит от факторов внешней среды (температуры, условия питания, влажность, реакция среды и др.) и от видовых особенностей бактерий. Высокая скорость размножения бактерий обеспечивает их сохранение на земле даже в условиях массовой гибели. Сохранившиеся отдельные клетки размножаются и вновь дают поколение.


Рост бактерий в популяции. Популяция (фр. population - население) - это совокупность бактерий одного вида (чистая культура) или разных видов (смешанная ассоциация), развивающихся в ограниченном пространстве (например, в питательной среде). В бактериальной популяции постоянно происходит рост, размножение и отмирание клеток. Культивирование микроорганизмов в искусственных условиях бывает периодическим, непрерывным и синхронным.

Периодическое (стационарное) культивирование происходит без притока и оттока питательной среды. Оно характеризуется классической кривой роста микроорганизмов, в которой выделяют отдельные фазы роста бактериальной популяции, отражающие общую закономерность роста и размножения клеток.

Лаг-фаза (англ. lag - отставание) начинается с момента посева бактерий в свежую питательную среду. Клетки адаптируются к данным условиям культивирования, растут, но не размножаются, они достигают максимальной скорости роста. Абсолютная и удельная скорость роста увеличиваются от нуля до максимально возможных значений.

Абсолютная скорость роста определяется отношением:

V = dx/dt , (1.1)

где V - прирост биомассы или числа клеток, выражается в массовых единицах, числе клеток или в условных единицах в единицу времени.

х - биомасса или число клеток;

t - время.

Удельная скорость роста определяется по формуле:

µ = (dx/dt) ? 1/х , (1.2)

где µ - прирост биомассы е единицу времени на единицу биомассы,

х - начальная биомасса.

Продолжительность лаг-фазы зависит от биологических особенностей бактерий, возраста культуры, количества посевного материала, состава питательной среды, температуры, аэрации, рН и др. Одни бактерии обладают коротким периодом задержки роста, другие длинным. Чем моложе культура, тем период короче. Чем состав питательной среды ближе к тому, в котором выращивали микроорганизмы, тем короче лаг-фаза. Изменения в питательной среде приводят к изменению лаг-фазы, так как необходимо время для синтеза ферментов, либо повышения их активности. Таким образом, факторы задержки роста можно разделить на внешние (состав среды, рН, температура и др.) и внутренние (возраст культуры). Длительность фазы моет быть от нескольких минут до нескольких часов и даже дней. В этой фазе μ = 0.

Лог-фаза (логарифмическая , или экспоненциальная ) характеризуется максимальной скоростью деления бактерий. Общее количество бактерий определяется по формуле:

N = N 0 ?2 n , (1.3)

где N и N 0 - общее количество клеток в конце фазы и в начале фазы соответственно;

n - число поколений, или генераций.

В микробиологической практике для выражения общего числа микробных клеток чаще всего пользуются не абсолютными числами (так как они достигают огромных величин), а их логарифмами. Прсле логарифмирования уравнения (1.3): lg N = lg N 0 + n?lg2, n?lg2 = lg N - lg N 0 , отсюда число поколений равно: n = (lg N - lg N 0)/ lg2

Скорость размножения одной клетки, или период генерации:

g = t/n , (1.4)

где t - время;

n - число поколений;

g - период генерации.

Значит: g = t ?lg 2 / (lg N - lg N 0) (1.5)

Приведенные уравнения основаны на предположении, что в лог-фазе все 100% клеток жизнеспособны. Однако экспериментально установлено, что около 20% клеток даже в эту фазу отмирает, поэтому в приведенные формулы вносится поправка - вместо 2 берется 1,6.

Экспоненциальный рост популяции описывается уравнением:

Х = Х 0 ? е μ max ? t , (1.6)

где Х и Х 0 - количество клеток (или биомасса) в конце и в начале опыта соответственно;

t - время опыта;

е - основание натурального логарифма;

μ max - максимальная удельная скорость роста.

В период логарифмической фазы большинство клеток является физиологически молодыми, биохимически активными, а также наиболее чувствительными к неблагоприятным факторам внешней среды. В этой фазе μ = max.

Фаза замедленного роста . Она объединяет две фазы - фазу линейного роста (μ = const) и фазу отрицательного ускорения . Фаза характеризуется в период линейного роста постоянной скоростью прироста биомассы (числа клеток). Затем при переходе в фазу отрицательного ускорения численность делящихся клеток уменьшается. Наступление фазы объясняется количественными изменениями состава питательной среды (потребление питательных веществ, накопление продуктов метаболизма).

Стационарная фаза характеризуется равновесием между погибающими и вновь образующимися клетками. Факторы, лимитирующие рост бактерий в предыдущей фазе, являются причиной возникновения стационарной фазы. Прироста биомассы нет (μ = 0) . В этой фазе наблюдается максимальная величина биомассы и максимальная суммарная численность клеток. Эти максимальные величины называются урожаем , или выходом .

Фаза отмирания (экспоненциальной гибели клеток ) характеризуется уменьшением числа живых клеток, возрастанием гетерогенности популяции (появляются клетки, не воспринимающие краситель, со слабым развитием муреинового слоя и др.). Процесс отмирания превалирует над делением (μ < 0).

Фаза выживания характеризуется наличием отдельных клеток, сохранивших в течение длительного времени жизнеспособность в условиях гибели большинства клеток популяции. Выжившие клетки характеризуются низкой активностью процессов метаболизма, изменением ультраструктуры клеток (мелкозернистая цитоплазма, отсутствие полирибосом и др.). Клетки более устойчивы к неблагоприятным условиям среды.

Таким образом, при стационарном культивировании микробные клетки все время находятся в изменяющихся условиях: сначала имеются в избытке все питательные вещества, затем постепенно наступает их недостаток, затем отравление клеток продуктами метаболизма.

Влияние лимитирующих факторов на скорость роста . Для нормального роста и развития микроорганизмов среда должна содержать необходимые элементы питания, иметь соответствующую рН, температуру и т.д. Факторы, ограничивающие рост культуры, называются лимитирующими . Характерная особенность роста популяции микроорганизмов - зависимость удельной скорости роста от концентрации субстрата. Эта зависимость выражается уравнением Моно , представляющим собой гиперболическую функцию:

μ = μ max ? S/(S + K S) , (1.7)

где μ - удельная скорость роста;

μ max - максимальная удельная скорость роста;

S - концентрация субстрата;

K S - константанасыщения, численно равная такой концентрации субстрата, которая обеспечивает скорость роста, соответствующую половине значенияμ max .

По мере потребления питательных веществ среда обогащается продуктами обмена, которые также лимитируют рост культуры. Наиболее общий случай влияния концентрации субстрата и продуктов обмена на скорость роста популяции микроорганизмов нашел отражение в модели Н.Д. Иерусалимского:

μ = μ max ? S/(S + K S) ? К Р / (К Р + Р) , (1.8)

где Р - концентрация продуктов обмена;

К Р - константа, численно равная такой концентрации продуктов обмена, при которой скорость роста замедляется вдвое.

Анализ этого уравнения показывает, что при условии К Р >> Р, когда величиной Р можно пренебречь. скорость роста ограничена только концентрацией субстрата. Если S >> K S , то скорость роста лимитирована накоплением продуктов обмена.

Непрерывное культивирование . Если в емкость, где находится бактериальная популяция, непрерывно подавать свежую питательную среду и одновременно с такой же скоростью выводить культуральную жидкость, содержащую бактериальные клетки и продукты метаболизма, то получается непрерывное культивирование. Регулируя скорость проточной среды, можно управлять ростом бактериальной популяции, например, удлинять логарифмическую или стационарную фазу на любое необходимое время. Непрерывное культивирование осуществляется в специальных приборах - хемостатах и турбидостатах. Непрерывное культивирование микроорганизмов используется для изучения их физиологии, биохимии, генетики и др., а также широко используется в микробиологической промышленности.

Синхронные культуры - это культуры, в которых некоторое время все клетки делятся одновременно (синхронно) за счет одинаковой готовности к делению всех особей. Синхронизация достигается физическими и химико-биологическими методами. К физическим методам относится температурное воздействие, дифференциальное центрифугирование или дифференциальное фильтрование, химико-биологическим - вынужденное голодание бактерий, выращивание бактерий на неполноценных средах с последующим переносом их в полноценные среды. Синхронные культуры используются для генетических и цитологических исследований, для изучения синтеза отдельных клеточных компонентов в процессе деления бактерий.