Опыт менделя. Исследования грегора менделя

Кратко описывающую основные этапы «разоблачения» опытов Грегора Иоганна Менделя. Имя этого ученого присутствует во всех школьных учебниках биологии, так же как и иллюстрации его опытов по разведению гороха. Мендель по праву считается первооткрывателем законов наследственности, которые стали первым шагом на пути к современной генетике.

Схема наследования признаков, выведенная Менделем

Учебник «Общая биология»

Масштабный эксперимент, проведенный интересовавшимся естественными науками монахом-августинцем, длился с 1856 по 1863 год. За эти несколько лет Мендель отобрал 22 сорта гороха, которые четко отличались между собой по определенным признакам. После этого исследователь приступил к опытам по так называемому моногибридному скрещиванию: Мендель скрещивал сорта, которые отличались друг от друга только цветом семян (одни были желтые, другие — зеленые).

Выяснилось, что

при первом скрещивании семена зеленого цвета «исчезают» — это правило получило название «закон единообразия гибридов первого поколения». Зато во втором поколении зеленые семена появляются снова, причем в соотношении 3:1.

(Мендель получил 6022 желтых семени и 2001 зеленое.) Исследователь назвал «победивший» признак доминантным, а «проигравший» — рецессивным, а выявленная закономерность стала известна как «закон расщепления».

Это правило означает, что 75% гибридов второго поколения будут обладать внешними доминантными признаками, а 25% — рецессивными. Что касается генотипа, то здесь соотношение будет следующим: 25% растений будут наследовать доминантный признак и от отца, и от матери, гены 50% будут нести в себе оба признака (проявится при этом доминантный — желтые горошины), а оставшиеся 25% окажутся полностью рецессивными.

Третий закон Менделя — закон независимого комбинирования — был выведен исследователем в ходе скрещивания растений, которые отличались друг от друга несколькими признаками. В случае с горохом это был цвет горошин (желтый и зеленый) и их поверхность (гладкая или морщинистая). Доминантными признаками были желтый цвет и гладкая поверхность, рецессивными — зеленая окраска и морщинистая поверхность. Грегор Мендель выяснил, что между собой эти признаки будут комбинироваться независимо друг от друга. При этом легко подсчитать, что по фенотипу — внешним признакам — потомство будет делиться на четыре группы: 9 желтых гладких, 3 желтых морщинистых, 3 зеленых гладких и 1 зеленая морщинистая горошина.

Если учитывать результаты расщепления по каждой паре признаков в отдельности, то получится, что отношение числа желтых семян к числу зеленых и отношение гладких семян к морщинистым для каждой пары равно 3:1.

В 1866 году результаты работы Грегора Менделя были опубликованы в очередном томе «Трудов Общества естествоиспытателей» под названием «Опыты над растительными гибридами», но у современников его работа интереса не вызвала. В 1936 году генетик-теоретик и статистик из Кембриджского университета Рональд Фишер заявил, что полученные Менделем результаты «слишком хороши, чтобы быть правдой». Однако обвинять исследователя в подтасовке фактов начал не он — судя по всему, первым это сделал Уолтер Уэлдон, биолог из Оксфордского университета. В октябре 1900 года, спустя несколько месяцев после возобновления интереса к работам Менделя, ученый написал в личном послании своему коллеге, математику Карлу Пирсону, что он наткнулся на исследование «некоего Менделя», который занимался скрещиванием гороха. На протяжении последующего года Уэлдон исследовал работу монаха и все более убеждался в том, что полученные Менделем пропорции не были бы такими «чистыми» при использовании реально существующих в природе — а не искусственно выведенных — сортов гороха.

Кроме того, биолога смутило и то, что Мендель оперировал бинарными категориями: желтый — зеленый, гладкий — морщинистый. По мнению Уэлдона, такое четкое разделение признаков весьма далеко от реальности: так, к какой категории исследователь относил семена желто-зеленого, неопределенного цвета?

Скорее всего, классифицировались они так, чтобы вписаться в предложенную модель, утверждал биолог, которому приводимые Менделем цифры — 5474 горошины с доминантным признаком из 7324 выращенных семян (то есть 74,7%, тогда как теоретически их должно было оказаться 75%) — показались слишком «хорошими». «Он либо лжец, либо волшебник», — так писал Уэлдон в письме Пирсону в 1901 году.

Иллюстрация из статьи Уэлдона 1902 года. Изображения наглядно демонстрируют, что не все семена можно классифицировать как «желтые», «зеленые», «гладкие» или «морщинистые»

Science. W. F. R. Weldon, 1902.

Впрочем, некоторые из тех, кто нашел результаты Менделя неправдоподобно хорошими, все же решили выступить в его защиту — одним из таких ученых стал и Рональд Фишер. Он заявил, что теоретическая модель наследования признаков должна была родиться непосредственно после начала экспериментов — а разработать ее мог только действительно выдающийся ум. Тщательно подготовленной иллюстрацией теории опыты, по мнению Фишера, стали позже, причем «подтасовывать» результаты разведения гороха мог не сам ученый, а ухаживавшие за растениями садовники, которые были знакомы с теоретическими выкладками исследователя.

К середине ХХ века дебаты вокруг вопроса о соблюдении Менделем научной этики несколько утихли — связано это было с тем, что генетика в то время находилась под сильным влиянием политических факторов, в частности, засилья «лысенковщины» в Советском Союзе.

В этих условиях западные ученые предпочитали не высказывать вслух сомнений в достоверности опытов Менделя, и тема была забыта, однако, по всей видимости, лишь на время.

Авторы статьи в Science еще раз утверждают, что приводимые им цифры слишком хороши, чтобы быть правдой, классификация признаков лишь по двум категориям не оправданна, а также соглашаются с тем, что монах мог считать желтые горошины как зеленые, если это лучше вписывалось в теорию. Тем не менее заслуги ученого это не умаляет: сформулированные им законы действительно работают, а их открытие стало первой ступенью развития современной генетики.

генетики . Объектом для экспериментов был выбран огородный горох, так как существует множество его сортов, чётко различающихся по ряду признаков; растения легко выращивать и скрещивать. Успех Менделя объясняется тщательным планированием и аккуратным проведением экспериментов, а также наличие большого количества опытов, позволявших получить статистически достоверные сведения.

Для своих первых опытов Мендель выбирал растения, чётко различающиеся по какой-либо паре признаков, например, по расположению цветов («пазушные» или «верхушечные»). Выращивая растения каждого типа на протяжении нескольких поколений, Мендель убедился в их пригодности для проведения эксперимента. Мендель проводил скрещивание – опылял растения одного типа пыльцой растений другого типа. Ряд предосторожностей (например, удаление тычинок у цветков, которые впоследствии опылялись, и надевание колпачков на цветы, чтобы избежать дополнительного опыления со стороны других растений) позволили получить достоверные результаты. Во всех случаях из семян, собранных с этих гибридов, вырастали растения с пазушными цветками. Признак «пазушные цветки», наблюдаемый у гибридов первого поколения, был назван доминантным , признак «верхушечные цветки» – рецессивным .

Далее растениям первого гибридного поколения была предоставлена возможность самоопылиться. Во втором гибридном поколении у части растений образовались пазушные цветки, а у другой части – верхушечные. Мендель предположил, что признак «верхушечные цветки» присутствовал и в первом поколении, но в скрытом виде. Во всех подобных опытах, проведённых с какой-либо парой признаков, примерно три четверти гибридов второго поколения обладали признаком, проявлявшимся и в первом поколении гибридов (его назвали доминантным ), а четверть потомства второго поколения обладала признаком, не проявившимся у гибридов первого поколения ( рецессивным ). Важно, что чем больше опытов было поставлено, тем ближе был полученный результат к отношению 3: 1.

На основании этой серии опытов были сделаны следующие выводы:

У родительских растений было по два одинаковых «фактора» (например, «пазушные цветки» либо «верхушечные цветки»).

Гибриды первого поколения получили по одному фактору от каждого родителя, причём эти факторы не слились, а сохранили свою индивидуальность.

Таким образом, был сформулирован закон расщепления ( первый закон Менделя ).

Итак, каждый признак организма контролируется парой вариантов гена (или, как говорят, порой аллелей ). Если в генотипе организма имеются аллели обоих типов, то один из них (доминантный) будет проявляться, полностью подавляя другой (рецессивный). При мейозе каждая пара аллелей расщепляется, и с каждой гаметой как дискретная, не изменяющаяся величина, может передаваться только один аллель. Передача генов потомкам находится в полном соответствии с теорией вероятности. Вероятность того, что гамета, полученная от гибрида первого поколения, будет нести доминантный аллель, равна 1/2. Вероятность каждой из четырёх комбинаций при оплодотворении составит 1/4; из них три комбинации будут содержать доминантный аллель и приведут к появлению особей с доминантным признаком. Первая из этих комбинаций содержит исключительно доминантные аллели – AA (говорят, что она гомозиготна по доминантному аллелю), а две другие содержат по одному доминантному и одному рецессивному аллелю – Aa (гетерозиготны). В четвёртой комбинации будут содержаться только рецессивные аллели; они будут соответствовать потомству с рецессивным признаком (то есть будут гомозиготны по рецессивному аллелю).

Гомозиготные особи при последующем самоопылении не расщепляются (дают единобразное потомство). В потомстве самоопыляющихся гетерозиготных особей наблюдается расщепление по внешним признакам в том же соотношении 3: 1.

Ген обычно обозначается первой буквой, с которой начинается название доминантного аллеля этого гена (например, A). При этом доминантный аллель обозначается прописной буквой (A), а рецессивный – строчной (a).

Гибрид первого поколения в описанных опытах гетерозиготен по своему генотипу, но обладает доминантным фенотипом (то есть имеет доминантный признак). Во втором поколении особи с доминантным фенотипом могут обладать как гомозиготным, так и гетерозиготным генотипом. Чтобы выяснить генотип гибрида второго поколения за одно скрещивание, необходимо произвести возвратное ( анализирующее ) скрещивание с особью, гомозиготной по рецессивному аллелю изучаемого гена. Если у всех потомков от этого скрещивания проявится доминантный фенотип, то особь с определяемым генотипом была гомозиготна по доминантному признаку. Если же появятся особи как с доминантными, так и рецессивными признаками (в примерном соотношении 1:1), то изучаемая особь была гетерозиготна.

В описанных опытах проводилось моногибридное скрещивание – брались особи, различавшиеся только по одному признаку. В дальнейшем Мендель перешёл к изучению дигибридного скрещивания , когда по той же методике ставились опыты над чистосортными (гомозиготными) особями, различающимися по двум признакам (например, жёлтые и зелёные семена, морщинистые и гладкие семена). В результате, во втором поколении могли получиться особи с семенами четырёх типов: жёлтые и гладкие, жёлтые и морщинистые, зелёные и гладкие, зелёные и морщинистые. Соотношение разных фенотипов во втором поколении составило примерно 9: 3: 3: 1. При этом для каждой пары признаков приближённо выполнялось соотношение 3: 1. На основании этого Мендель вывел принцип независимого распределения ( второй закон Менделя ).

Схему дигибридного скрещивания удобно записывать в специальной таблице – так называемой решётке Пеннета ; при этом количество возможных ошибок при определении генотипа потомства сводится к минимуму. Все генотипы мужских гамет вносятся в заголовки вертикальных столбцов, а все генотипы женских гамет – в заголовки горизонтальных. Если вернуться к примеру с семенами гороха, то можно выяснить, что вероятность появления во втором поколении особей с гладкими семенами (доминантный аллель) равняется 3/4, с морщинистыми семенами – 1/4 (рецессивный аллель), с жёлтыми семенами – 3/4 (доминантный аллель) и с зелёными семенами – 1/4 (рецессивный аллель). Таким образом, вероятности сочетания аллелей в генотипе равны.

Мендель Грегор Иоганн

Австрийский священник и ботаник Грегор Иоганн Мендель заложил основы такой науки, как генетика. Он математически вывел законы генетики, которые называются сейчас его именем.

Грегор Иоганн Мендель

Иоганн Мендель родился 22 июля 1822 года в Хайзендорфе, Австрия. Ещё в детстве он начал проявлять интерес к изучению растений и окружающей среды. После двух лет учебы в Институте Философии в Ольмютце Мендель решил уйти в монастырь в Брюнне. Это произошло в 1843 году. При обряде пострижения в монахи ему было дано имя Грегор. Уже в 1847 году он стал священником.

Жизнь священнослужителя состоит не только из молитв. Мендель успевал много времени посвящать учебе и науке. В 1850 году он решил сдать экзамены на диплом учителя, однако провалился, получив "два" по биологии и геологии. 1851-1853 годы Мендель провел в Университете Вены, где изучал физику, химию, зоологию, ботанику и математику. По возвращении в Брюнн отец Грегор начал все-таки преподавать в школе, хотя так никогда и не сдал экзамен на диплом учителя. В 1868 году Иоганн Мендель стал аббатом.

Свои эксперименты, которые, в конце концов, привели к сенсационному открытию законов генетики, Мендель проводил в своем маленьком приходском саду с 1856 года. Надо отметить, что окружение святого отца способствовало научным изысканиям. Дело в том, что некоторые его друзья имели очень хорошее образование в области естествознания. Они часто посещали различные научные семинары, в которых участвовал и Мендель. Кроме того, монастырь имел весьма богатую библиотеку, завсегдатаем которой был, естественно, Мендель. Его очень воодушевила книга Дарвина "Происхождение видов", но доподлинно известно, что опыты Менделя начались задолго до публикации этой работы.

8 февраля и 8 марта 1865 году Грегор (Иоганн) Мендель выступал на заседаниях Общества Естествознания в Брюнне, где рассказал о своих необычных открытиях в неизвестной пока области (которая позже станет называться генетикой). Опыты Грегор Мендель ставил на простых горошинах, однако, позже спектр объектов эксперимента был значительно расширен. В результате, Мендель пришел к выводу, что различные свойства конкретного растения или животного появляются не просто из воздуха, а зависят от "родителей". Информация об этих наследственных свойствах передается через гены (термин, введенный Менделем, от которого произошел термин "генетика"). Уже в 1866 году вышла книга Менделя "Versuche uber Pflanzenhybriden" ("Эксперименты с растительными гибридами"). Однако современники не оценили революционность открытий скромного священника из Брюнна.

Научные изыскания Менделя не отвлекали его от повседневных обязанностей. В 1868 году он стал аббатом, наставником целого монастыря. В этой должности он отлично отстаивал интересы церкви в целом и монастыря Брюнна, в частности. Ему хорошо удавалось избегать конфликтов с властями и уходить от избыточного налогообложения. Его очень любили прихожане и ученики, молодые монахи.

6 января 1884 года отца Грегора (Иоганна Менделя) не стало. Он похоронен в родном Брюнне. Слава как ученого пришла к Менделю уже после смерти, когда подобные его экспериментам опыты в 1900 году были независимо проведены тремя европейскими ботаниками, которые пришли к аналогичным с Менделем результатам.

Грегор Мендель- учитель или монах?

Судьба Менделя после Богословского института уже устроена. Рукоположенный в священники двадцатисемилетний каноник получил превосходный приход в Старом Брюнне. Он уже целый год готовится сдавать экзамены на степень доктора богословия, когда в его жизни происходят серьезные изменения. Георг Мендель решает довольно резко изменить свою судьбу и отказывается от несения религиозной службы. Он хотел бы изучать природу и ради этой своей страсти решает занять место в Цнаймской гимназии, где к этому времени открывается 7 класс. Он испрашивает место “супплента-профессора”.

В России “профессор”- звание чисто университетское, а в Австрии и Германии так величали даже наставника первоклашек. Гимназический суплент - это скорее, можно перевести как “заурядный учитель”, “помощник учителя”. Это мог быть человек, прекрасно владеющий предметом, но так как он не имел диплома, принимали его на работу скорее временно.

Сохранился и документ, поясняющий столь необычное решение пастора Менделя. Это официальное письмо епископу графу Шафготчу от настоятеля монастыря Святого Томаша прелата Наппа.” Ваше Милостивое Епископское Преосвященство! Высокий Императорско-Королевский Земельный Президиум декретом от 28 сентября 1849 года за № Z 35338 почел за благо назначить каноника Грегора Менделя супплентом в Цнаймскую гимназию. “... Оный каноник образ жизни имеет богобоязненный, воздержанием и добродетельным поведением, его сану полностью соответствующим, сочетающимся с большой преданностью наукам... К попечению же о душах мирян он, однако, пригоден несколько менее, ибо стоит ему очутиться у одра больного, как от вида страданий он бывает, охватываем непреодолимым смятением и сам от сего становится опасно больным, что и побуждает меня сложить с него обязанности духовника “.

Итак, осенью 1849 года каноник и супплент Мендель прибывает в Цнайм, дабы приступить к новым обязанностям. Мендель получает на 40 процентов меньше своих коллег, имевших дипломы. Он пользуется уважением у своих коллег, его любят ученики. Однако преподает он в гимназии не предметы естественнонаучного цикла, а классическую литературу, древние языки и математику. Нужен диплом. Это позволит преподавать ботанику и физику, минералогию и естественную историю. К диплому было 2 пути. Один - окончить университет, другой путь - более краткий - сдать в Вене перед специальной комиссией императорского министерства культов и просвещения экзамены на право преподавать такие-то предметы в таких-то классах.

Законы Менделя

Цитологические основы законов Менделя базируются на:

Парности хромосом (парности генов, обусловливающих возможность развития какого-либо признака) особенностях мейоза (процессах, происходящих в мейозе, которые обеспечивают независимое расхождение хромосом с находящимися на них генами к разным плюсам клетки, а затем и в разные гаметы)

Особенностях процесса оплодотворения (случайного комбинирования хромосом, несущих по одному гену из каждой аллельной пары)

Научный метод Менделя

Основные закономерности передачи наследственных признаков от родителей к потомкам были установлены Г. Менделем во второй половинеXIX в. Он скрещивал растения гороха, различающиеся по отдельным признакам, и на основе полученных результатов обосновал идею о существовании наследственных задатков, ответственных за проявление признаков. В своих работах Мендель применил метод гибридологического анализа, ставший универсальным в изучении закономерностей наследования признаков у растений, животных и человека. В отличие от своих предшественников, пытавшихся проследить наследование многих признаков организма в совокупности, Мендель исследовал это сложное явление аналитически. Он наблюдал наследование всего лишь одной пары или небольшого числа альтернативных (взаимоисключающих) пар признаков у сортов садового гороха, а именно: белые и красные цветки; низкий и высокий рост; желтые и зеленые, гладкие и морщинистые семена гороха и т. п. Такие контрастные признаки называются аллелями, а термин “аллель” и “ген” употребляют как синонимы. Для скрещиваний Мендель использовал чистые линии, т. е. потомство одного самоопыляющегося растения, в котором сохраняется сходная совокупность генов. Каждая из этих линий не давала расщепления признаков. Существенным в методике гибридологического анализа было и то, что Мендель впервые точно подсчитал число потомков - гибридов с разными признаками, т. е. математически обработал полученные результаты и ввел для записи различных вариантов скрещивания принятую в математике символику: А, В , С, D и т. д. Этими буквами он обозначал соответствующие наследственные факторы. В современной генетике приняты следующие условные обозначения при скрещивании: родительские формы - Р; полученные от скрещивания гибриды первого поколения - F1 ; гибриды второго поколения - F2, третьего - F3 и т. д. Само скрещивание двух особей обозначают знаком х (например: АА х aа). Из множества разнообразных признаков скрещиваемых растений гороха в первом опыте Мендель учитывал наследование лишь одной пары: желтые и зеленые семена, красные и белые цветки и т. д. Такое скрещивание называется моногибридным. Если прослеживают наследование двух пар признаков, например желтые гладкие семена гороха одного сорта и зеленые морщинистые другого, то скрещивание называют дигибридным. Если же учитывают три и большее число пар признаков, скрещивание называют полигибридным.

Закономерности наследования признаков

Аллели - обозначают буквами латинского алфавита, при этом одни признаки Мендель назвал доминирующими (преобладающими) и обозначил их заглавными буквами - А, В, С и т. д., другие - рецессивными (уступающими, подавляемыми), которые обозначил строчными буквами - а, в, с и т. д. Поскольку каждая хромосома (носитель аллелей или генов) содержит лишь одну из двух аллелей, а гомологичные хромосомы всегда парные (одна отцовская, другая материнская), в диплоидных клетках всегда есть пара аллелей: АА, аа, Аа, ВВ, bb. Bb и т. д. Особи и их клетки, имеющие в своих гомологичных хромосомах пару одинаковых аллелей (АА или аа), называются гомозиготными. Они могут образовывать только один тип половых клеток: либо гаметы с аллелью А, либо гаметы с аллелью а. Особи, у которых в гомологичных хромосомах их клеток имеются и доминантный, и рецессивный гены Аа, называются гетерозиготными; при созревании половых клеток они образуют гаметы двух типов: гаметы с аллелем А и гаметы с аллелем а. У гетерозиготных организмов доминантная аллель А, проявляющаяся фенотипически, находится в одной хромосоме, а рецессивная аллель а, подавляемая доминантом, - в соответствующем участке (локусе) другой гомологичной хромосомы. В случае гомозиготности каждая из пары аллелей отражает либо доминантное (АА), либо рецессивное (аа) состояние генов, которые в обоих случаях проявят свое действие. Понятие о доминантных и рецессивных наследственных факторах, впервые примененное Менделем, прочно утвердилось в современной генетике. Позже были введены понятия генотип и фенотип. Генотип - совокупность всех генов, которые имеются у данного организма. Фенотип - совокупность всех признаков и свойств организма, которые выявляются в процессе индивидуального развития выданных условиях. Понятие фенотип распространяется на любые признаки организма: особенности внешнего строения, физиологических процессов, поведения и т. д. Фенотипическое проявление признаков всегда реализуется на основе взаимодействия генотипа с комплексом факторов внутренней и внешней среды.

Три закона Менделя

Г. Мендель сформулировал на основе анализа результатов моногибридного скрещивания и назвал их правилами (позже они стали называться законами). Как оказалось, при скрещивании растений двух чистых линий гороха с желтыми и зелеными семенами в первом поколении (F1) все гибридные семена имели желтый цвет. Следовательно, признак желтой окраски семян был доминирующим. В буквенном выражении это записывается так: Р АА х аа; все гаметы одного родителя А, А, другого - а, а, возможное сочетание этих гамет в зиготах равно четырем: Аа, Аа, Аа, Аа, т. е. у всех гибридов F1 наблюдается полное преобладание одного признака над другим - все семена при этом желтого цвета. Аналогичные результаты получены Менделем и при анализе наследования других шести пар изученных признаков. Исходя из этого, Мендель сформулировал правило доминирования, или первый закон: при моногибридном скрещивании все потомство в первом поколении характеризуется единообразием по фенотипу и генотипу - цвет семян желтый, сочетание аллелей у всех гибридов Аа. Эта закономерность подтверждается и для тех случаев, когда нет полного доминирования: например, при скрещивании растенияночной красавицы, имеющего красные цветки (АА), с растением, имеющим белые цветки (аа), у всех гибридов fi (Аа) цветки оказываются не красными, а розовыми - их окраска имеет промежуточный цвет, но единообразие полностью сохраняется. После работ Менделя промежуточный характер наследования у гибридов F1 был выявлен не только у растений, но и у животных, поэтому закон доминирования-первый закон Менделя-принято называть также законом единообразия гибридов первого поколения . Из семян, полученных от гибридов F1, Мендель выращивал растения, которые либо скрещивал между собой, либо давал им возможность самоопыляться. Среди потомков F2, выявилось расщепление: во втором поколении оказались как желтые, так и зеленые семена. Всего Мендель получил в своих опытах 6022 желтых и 2001 зеленых семян, их численное соотношение примерно 3:1. Такие же численные соотношения были получены и по другим шести парам изученных Менделем признаков растений гороха. В итоге второй закон Менделя формулируется так: при скрещивании гибридов первого поколения их потомство дает расщепление в соотношении 3:1 при полном доминировании и в соотношении 1:2:1 при промежуточном наследовании (неполное доминирование) . Схема этого, опыта в буквенном выражении выглядит так: Р Аа х Аа, их гаметы А и я, возможное сочетание гамет равно четырем: АА, 2Аа, аа, т. е. 75% всех семян в F2 имея один или два доминантных аллеля, обладали желтой окраской и 25 % - зеленой. Факт появления в рецессивных признаков (оба аллеля у них рецессивны-аа ) свидетельствует о том, что эти признаки, так же как контролирующие их гены, не исчезают, не смешиваются с доминантными признаками в гибридном организма, их активность подавлена действием доминантных генов. Если же в организме присутствуют оба рецессивных по данному признаку гена, то их действие не подавляется, и они проявляют себя в фенотипе. Генотип гибридов в F2 имеет соотношение 1:2:1. При последующих скрещиваниях потомство F2 ведет себя по-разному: 1) из 75% растений с доминантными признаками (с генотипами АА и Аа) 50% гетерозиготны (Аа) и поэтому в Fз они дадут расщепление 3:1, 2) 25% растений гомозиготны по доминантному признаку (АА) и при самоопылении в Fз не дают расщепления; 3) 25% семян гомозиготны по рецессивному признаку (аа), имеют зеленую окраску и при самоопылении в F3 не дают расщепления признаков.

Для объяснения существа явлений единообразия гибридов первого поколения и расщепления признаков у гибридов второго поколения Мендель выдвинул гипотезу чистоты гамет: всякий гетерозиготный гибрид (Аа, Bb и т. д.) формирует “чистые” гаметы, несущие только одну аллель: либо А, либо а , что впоследствии полностью подтвердилось и в цитологических исследованиях. Как известно, при созревании половых клеток у гетерозигот гомологичные хромосомы окажутся в разных гаметах и, следовательно, в гаметах будет по одному гену из каждой пары. Анализирующее скрещивание используется для выяснения гетерозиготности гибрида по той или иной паре признаков. При этом гибрид первого поколения скрещивается с родителем, гомозиготным по рецессивному гену (аа). Такое скрещивание необходимо потому, что в большинстве случаев гомозиготные особи (АА) фенотипически не отличаются от гетерозиготных (Аа) (семена гороха от АА и Аа имеют желтый цвет). Между тем в практике выведения новых пород животных и сортов растений гетерозиготные особи в качестве исходных не годятся, так как при скрещивании их потомство даст расщепление. Необходимы только гомозиготные особи. Схему анализирующего скрещивания в буквенном выражении можно показать двумя вариантами:

    гибридная особь гетерозиготная (Аа), фенотипически неотличимая от гомозиготной, скрещивается с гомозиготной рецессивной особью (аа ): Р Аа х аа: их гаметы - А, а и а,а, распределение в F1: Аа, Аа, аа, аа, т. е. в потомстве наблюдается расщепление 2:2 или 1:1, подтверждающее гетерозиготность испытуемой особи; 2) гибридная особь гомозиготна по доминантным признакам (АА): Р АА х аа ; их гаметы А A и а, а; в потомстве F1 расщепления не происходит Цель дигибридного скрещивания - проследить наследование двух пар признаков одновременно. При этом скрещивании Мендель установил еще одну важную закономерность: независимое расхождение аллелей и свободное, или независимое, их комбинирование, впоследствии названное третьим законом Менделя . Исходным материалом были сорта гороха с желтыми гладкими семенами (ААВВ) и зелеными морщинистыми (аавв); первые доминантные, вторые рецессивные. Гибридные растения из f1 сохраняли единообразие: имели желтые гладкие семена, были гетерозиготными, их генотип - АаВв. Каждое из этих растений в мейозе образует гаметы четырех типов: АВ, Ав, аВ, аа. Для определения сочетаний этих типов гамет и учета результатов расщепления теперь пользуются решеткой Пеннета. При этом генотипы гамет одного родителя располагают над решеткой по горизонтали, а генотипы гамет другого родителя - у левого края решетки по вертикали (рис. 20). Четыре сочетания того и другого типа гамет в F2 могут дать 16 вариантов зигот, анализ которых подтверждает случайное комбинирование генотипов каждой из гамет того и другого родителя, дающее расщепление признаков по фенотипу в соотношении 9:3:3:1. Важно подчеркнуть, что при этом выявились не только признаки родительских форм, но и новые комбинации: желтые морщинистые (ААвв) и зеленые гладкие {aaBB). Желтые гладкие семена гороха фенотипически подобны потомкам первого поколения от дигибридного скрещивания, но их генотип может иметь различные варианты: ААВВ, АаВВ, ААВв, АаВв; новыми сочетаниями генотипов оказались фенотипически зеленые гладкие - ааВВ, ааВв и фенотипически желтые морщинистые - ААвв, Аавв; фенотипически зеленые морщинистые имеют единственный генотип аавв. В этом скрещивании форма семян наследуется независимо от их окраски. Рассмотренные 16 вариантов сочетаний аллелей в зиготах иллюстрируют комбинативную изменчивость и независимое, расщепление пар аллелей, т. е. (3:1)2. Независимое комбинирование генов и основанное на нем расщепление в F2 в соотношении. 9:3:3:1 в дальнейшем было подтверждено для большого числа животных и растений, но при соблюдении двух условий:

1) доминирование должно быть полным (при неполном доминировании и других формах взаимодействия генов числовые соотношения имеют иное выражение); 2) независимое расщепление приложимо для генов, локализованных в разных хромосомах. Третий закон Менделя можно сформулировать так: члены одной пары аллелей отделяются в мейозе независимо от членов других пар, комбинируясь в гаметах случай, но во всех возможных сочетаниях (при моногибридном скрещивании таких сочетаний было 4, при дагибрид-ном - 16, при тригибридном скрещивании гетерозиготы образуют по 8 типов гамет, для которых возможны 64 сочетания, и т. д.).

Подобные документы:

Выступление: Мендель Грегор Иоганн Австрийский священник и ботаник Грегор Иоганн Мендель заложил основы такой науки, как генетика. Он математически вывел законы генетики, которые называются сейчас его именем. Иоганн Мендель родился в 1822 году в Австрии. Ещё в детстве он начал проявлять интерес к изучению растений и окружающей среды. После двух лет учебы в Институте Философии в Ольмютце Мендель решил уйти в монастырь в Брюнне.

Реферат Генетика и человек Люди интересуются генетикой давно, правда, не всегда они называли вопросы наследования определенных признаков генетикой.

Реферат Расово-антропологическая школа Антропология как самостоятельная дисциплина начала развиваться во второй половине 18- го века. Ранние попыт­ки понять место человека в природе, его сходство с другими организмами, его своеобразие, являются, по-видимому, столь же древними, как само научное знание вообще. Основные этапы фор­мирования антропологических знаний, совпадают с переломными этапами истории человеческого общества.

Реферат Будущее человечества и прогресс генетики Генетика представляет собой одну из основных, наиболее увлекательных и вместе с тем сложных дисциплин современного естествознания. Место генетики среди биологических наук и особый интерес к ней определяются тем, что она изучает основные свойства организмов, а именно наследственность и изменчивость.

Реферат Достижение современного естествознания в биологии Идея эволюции живой природы возникла в Новое время как противопоставление креационизму (от лат. "созидание") - учению о сотворении мира богом из ничего и неизменности созданного творцом мира. Креацианизм как мировоззрение сложился в эпоху поздней античности и в Средневековье и занял господствующие позиции в культуре.

Реферат Грегор Мендель (1822-1884) Мендель (Mendel) Грегор Иоганн (22.07.1822, Хейнцендорф – 06.01.1884, Брюнне), австрийский биолог, основоположник генетики. Учился в школах Хейнцендорфа и Липника, затем в окружной гимназии в Троппау. В 1843 окончил философские классы при университете в Ольмюце и постригся в монахи Августинского монастыря св. Фомы в Брюнне (ныне Брно, Чехия).

Реферат Грегор Иоганн Мендель Грегор Иоганн Мендель родился в 1822 году в Хейнцендорфе в Силезии, где его отец был владельцем небольшого крестьянского надела. После получения начального образования в тамошней деревенской школе и позже по окончании коллегии пиаристов в Лейпнике он был в 1834 году принял в Троппаунскую императорско-королевскую гимназию в первый грамматический класс.

Реферат Введение в мед.генетику I. Основные понятия. Генетика изучает вопросы наследственности и изменчивости. Медицинская генетика изучает роль наследственности в патологии человека. 1. Первый шаг в изучении наследственности был сделан Грегором Менделем. Он заложил основу для понимания основных положений генетики, в том числе генетики человека. Гипотезы Менделя можно обобщить в виде трех основных законов. а.

Реферат Мировоззренческие и социально-этические проблемы генетики человека TOC \o "1-3" \h \z \u ВВЕДЕНИЕ................................................................................................... PAGEREF _Toc164087062 \h 3 1 КРАТКАЯ ИСТОРИЯ ГЕНЕТИКИ....................................................... PAGEREF _Toc

Грегор Мендель первым приблизился к разгадке древней тайны. Он был монахом в Брюннском монастыре (ныне Брно, Чехия) и помимо преподавательской деятельности занимался на досуге опытами по скрещиванию садового гороха. Его доклад на эту тему, опубликованный в 1865 году, не встретил широкого признания. Несмотря на то что за шесть лет до этого пристальное внимание всего ученого мира привлекла теория естественного отбора, те немногие исследователи, что прочли статью Менделя, не придали ей особого значения и не связали изложенные в ней факты с теорией происхождения видов. И только в начале XX века три биолога, проводя эксперименты над разными организмами, получили схожие результаты, подтвердив гипотезу Менделя, который посмертно прославился как основоположник генетики.

Почему же Менделю удалось то, что не удавалось большинству других исследователей? Во-первых, он исследовал только простые, четко определяемые признаки - например, цвет или форму семян. Выделить и опознать простые признаки, которые могут передаваться по наследству, нелегко. Такие признаки, как высота растения, а также интеллект или форма носа человека, зависят от множества факторов, и проследить законы их наследования очень трудно. Внешне заметные и при этом независимые от других признаки встречаются довольно редко. Кроме того, Мендель наблюдал передачу признака на протяжении нескольких поколений. И что, пожалуй, самое важное, он записывал точное количество особей с тем или иным признаком и проводил статистический анализ данных.

В классических экспериментах по генетике всегда используют два сорта или более, две разновидности, или линии, одного и того же биологического вида, отличающиеся друг от друга по таким простым признакам, как окраска цветка растений или окрас меха животных. Мендель начинал с чистых линий гороха, то есть с линий, которые на протяжении нескольких поколений скрещивались исключительно друг с другом и потому постоянно демонстрировали только одну форму признака. О таких линиях говорят, что они размножаются в чистоте. Во время эксперимента Мендель скрещивал между собой особи из разных линий и получал гибриды. При этом на рыльце растения с удаленными пыльниками из одной линии он переносил пыльцу растения из другой линии. Предполагалось, что признаки разных родительских растений в гибридном потомстве должны смешаться между собой. В одном из экспериментов (рис. 4.1) Мендель скрестил чистый сорт с желтыми семенами и чистый сорт с зелеными семенами. В записи эксперимента крестик означает «скрещивается с...», а стрелка указывает на следующее поколение.

Можно было предположить, что у гибридного поколения будут желто-зеленые семена или некоторые желтые, а какие-то зеленые. Но образовались только желтые семена. Казалось бы, что признак «зеленый» совсем исчез из поколения F 1 (буквой F обозначаются поколения, от латинского слова filius - сын). Затем Мендель посадил семена из поколения F 1 и скрестил растения между собой, получив таким образом второе поколение F 2 . Интересно, что признак «зеленый», исчезнувший в первом гибридном поколении, проявился вновь: у одних растений из поколения F 2 были желтые семена, а у других зеленые. Такие же результаты дали другие эксперименты по скрещиванию растений с разными проявлениями признака. Например, когда Мендель скрещивал чистый сорт гороха с фиолетовыми цветками и чистый сорт с белыми цветами, в поколении F 1 все растения оказывались с фиолетовыми цветками, а в поколении F 2 у одних растений цветки были фиолетовые, а у других белые.

В отличие от своих предшественников, Мендель решил подсчитать точное количество растений (или семян) с тем или иным признаком. Скрещивая растения по цвету семян, он получил в поколении F 2 6022 желтых семени и 2001 зеленое семя. Скрещивая растения по окраске цветков, он получил 705 фиолетовых цветков и 224 белых. Эти цифры еще ничего не говорят, и в похожих случаях предшественники Менделя опускали руки и утверждали, что ничего разумного по этому поводу сказать нельзя. Однако Мендель заметил, что отношение этих чисел близко к пропорции 3:1, и это наблюдение подтолкнуло его к простому выводу.

Мендель разработал модель - гипотетическое объяснение того, что происходит при скрещивании. Ценность модели зависит от того, насколько хорошо она объясняет факты и предсказывает результаты экспериментов. Согласно модели Менделя, в растениях имеются некие «факторы», определяющие передачу наследственных признаков, причем каждое растение имеет по два фактора для каждого признака - по одному от каждого родителя. Кроме того, один из этих факторов может быть доминантным, то есть сильным и видимым, а другой - рецессивным, или слабым и невидимым. Желтая окраска семян должна быть доминантной, а зеленая - рецессивной; фиолетовый цвет доминантен по отношению к белому. Такое свойство «факторов наследственности» находит отражение в записи генетических экспериментов: прописная буква означает доминантный признак, а строчная - рецессивный. Например, желтую окраску можно обозначить как Ү, а зеленую как у. Согласно современной точке зрения, «факторы наследственности» - это отдельные гены, определяющие цвет или форму семян, и мы называем различные формы гена аллелями или аллеломорфами (морф - форма, аллелон - друг друга).

Рис. 4.1. Объяснение результатов, полученных Менделем. Каждое растение имеет две копии гена, определяющего цвет, но передает своим гаметам по одной из этих копий. Ген Yдоминантен по отношению к гену у, поэтому семена всех растений поколения F t с набором генов Yy желтые. В следующем поколении возможны четыре комбинации генов, три из которых дают желтые семена и одна - зеленые

На рис. 4.1 показан ход экспериментов Менделя, а также приведены выводы, к которым он пришел. Чистая линия гороха с желтыми семенами должна обладать двумя факторами Y(YY), а чистая линия гороха с семенами зеленого цвета - двумя факторами у (уу). Так как оба фактора в родительских растениях одинаковы, мы говорим, что они гомозиготны или что эти растения - гомозиготы. Каждое из родительских растений дает потомству по одному фактору, определяющему цвет семян, поэтому все растения поколения F t имеют факторы Yy. Два фактора цвета у них разные, поэтому мы говорим, что они гетерозиготны или что эти растения - гетерозиготы. Когда гетерозиготные растения скрещиваются между собой, каждое дает по два вида гамет, половина которых переносит фактор Y, а другая половина - фактор у. Гаметы объединяются случайным образом и дают четыре вида комбинаций: YY, Yy, уҮ или уу. Зеленые семена образуются только при последней комбинации, так как оба фактора в ней рецессивные; при других комбинациях получаются желтые семена. Так объясняется отношение 3:1, которое наблюдал Мендель.

Г. И. Мендель проводил свои опыты по скрещиванию растений в 1856…1865 гг. в монастыре г. Брюнна (ныне – г. Брно, Чехия). Несколько лет он потратил, чтобы выбрать экспериментальный объект; остановился на горохе – Pisum sativum . Его достоинства:

Размножается половым способом (в отличие от ястребинки и одуванчика, у которых семена могут завязываться без опыления; это – так называемый бесполосеменной способ размножения), поэтому Мендель избежал связанной с этим западни ;

Имеются сорта с контрастными (альтернативными, взаимоисключающими) признаками;

Имеются «чистые» линии (сорта), которые сохраняют определенный признак на протяжении многих поколений, не давая расщепления при скрещивании с себе подобными (такие линии У. Бэтсон в 1902 г. назвал гомозиготными , а дающие расщепление – гетерозиготными );

- особое строение цветков , благодаря которому скрещивание легко контролировать (цветки обоеполые; тычинки и пестики закрыты лепестками (парус, лодочка, крыло), что препятствует перекрестному опылению).

После выбора этого объекта Мендель еще 2 года потратил на предварительные скрещивания различных сортов, чтобы убедиться, что – это действительно «чистые» линии. Остановился на 7 парах признаков :

Красные и белые, верхушечные и пазушные цветки ;

Гладкие и морщинистые, желтые и зеленые семена ;

Длинные и короткие стебли ;

Простые и фрагментированные, зеленые и желтые стручки .

Сама техника скрещивания заключалась в том, что у цветка гороха одного сорта удалялись тычинки до созревания его пыльцы, затем на пестик этого цветка наносилась пыльца с тычинки, взятой из цветка другого родителя. Для повышения достоверности таким образом опылялись многие десятки цветков. Затем Мендель собирал семена (сотни и тысячи), образовавшиеся после перекрестного опыления, высевал их и изучал признаки у растений – гибридов первого поколения (от лат. hybridus – помесь). При необходимости можно было провести перекрестное опыление между этими гибридами или дождаться, когда произойдет самоопыление, и собрать семена гибридов второго поколения .

В результате Менделем был создан гибридологический метод анализа наследования признаков, который успешно применяется и сейчас.

Его особенности:

1) обязательное использование гомозиготных особей («чистых линий»);

2) анализируются пары альтернативных (взаимоисключающих) признаков;

3) проводится точный количественный учет потомков с различными комбинациями признаков (используются математические методы);

4) наследование признаков прослеживается в ряду поколений.

Гибридологический – значит основанный на скрещивании; а гибрид - это потомок от скрещивания двух особей.

В 1909 г. датчанин Вильгельм Иогансен предложил термины ген , фен , генотип , фенотип .

Ген – элементарная единица наследственности, наследственный задаток, определяющий развитие одного признака;

фен – отдельный признак, определяемый одним геном; признак - свойство, отличительная особенность организма;

генотип – совокупность всех генов организма;

фенотип – совокупность всех внешних и внутренних признаков организма, которые развиваются на основе генотипа под влиянием условий окружающей среды.

Ген в современной интерпретации – это участок ДНК, несущий информацию о строении одного или нескольких полипептидов или одной молекулы рРНК или тРНК.

2. Моногибридное скрещивание. Первый и второй законы Менделя

При скрещивании двух чистых линий гороха, различающихся по одной паре альтернативных признаков, например, красные и белые цветки (это моногибридное скрещивание), Мендель получил семена гибридов. После их высева в почву выросли растения только с красными цветками, т. е. один из признаков (красная окраска) подавлял развитие другого (белая окраска).

Первый из них, преобладающий , Мендель назвал доминантным (от лат. dominus – господин), а второй, подавляемый – рецессивным (от лат. recession – отступление).

Мендель нашел очень удачную, алгебраическую форму записи схем скрещивания. Единицы наследственности он называлзадатками , или элементами и обозначал их латинскими буквами: строчными – рецессивные, заглавными – доминантные.

Гомозиготным называется такой организм, клетки которого несут несут только доминантный или только рецессивный гены. Гетерозиготным называется организм, клетки которого несут и доминантный, и рецессивный гены.


Parentis P : АА × аа


Гаметы G : А а

Filii F 1 : Аа

Формулировка первого закона (единообразия I поколения ):При моногибридном скрещивании гомозиготных организмов наблюдается единообразие гибридов I поколения как по фенотипу, так и по генотипу.

В последующих опытах Мендель дождался самоопыления гибридов
I поколения, собрал несколько сотен семян, высеял их и изучил фенотип гибридов II поколения. Оказалось, что соотношение растений с доминантным и рецессивным признаками составляет примерно 3: 1. При этом анализу подвергалось от нескольких сотен до 1,5 тысяч растений в каждом случае. Такой же результат получается и при перекрестном опылении гибридов I поколения.

Схема скрещивания в этом случае такая:

P (F 1) : Аа × Аа

G : А а А а


F 2 : АА Аа аА аа

Формулировка второго закона (расщепления ):При моногибридном скрещивании гетерозигот у потомков наблюдается расщепление в соотношении примерно 3: 1 по фенотипу и 1: 2: 1 по генотипу.

Более удобный способ записи опытов по скрещиванию предложил в начале XX века британский генетик Реджинальд Грундалл Пеннет
(Punnett). Это так называемая решетка Пеннета .


Дробями записаны частоты гамет, при их перемножении получаются частоты генотипов.

Цитологический смысл законов Менделя очевиден: при мейозе в каждую гамету попадает только одна хроматида из пары гомологичных хромосом и, соответственно, один из пары генов, определяющих альтернативные признаки.

Гены А и а, определяющие развитие альтернативных признаков, называются аллелями (В. Иогансен, 1926). По сути дела, аллели – это варианты , мутантные формы некоего исходного гена («дикого типа»). Они находятся в идентичных участках гомологичных хромосом.

Причины доминирования многообразны и не до конца изучены, одна из них: доминантный аллель определяет синтез полноценного фермента, а рецессивный – дефектного: вследствие мутации в гене фермент либо не синтезируется вовсе, либо дефектен (имеет меньшее сродство к субстрату, дает меньшую скорость реакции и т. д.).

Сейчас мы рассмотрели полное доминирование , описанное Менделем. Известно также неполное доминирование , или промежуточный тип наследования.

При неполном доминировании гетерозигота имеет фенотип, промежуточный между фенотипами гомозигот. Например, у растения ночная красавица (Mirabilis jalapa ) имеются гомозиготные линии с красными (АА) и белыми (аа) цветками. Гибриды F1 являются гетерозиготами Аа и имеют цветки розовой окраски . Во втором поколении наблюдается расщепление 1:2:1 как по фенотипу, так и по генотипу. В целом, 1 ый и 2 ой законы Менделя соблюдаются с поправкой на промежуточный фенотип у гетерозигот.

Причина промежуточного проявления признака у гетерозигот: аллель А находится в геноме гетерозиготы в единственном числе, поэтому проявляется слабее, чем в геноме гомозиготы АА (двойная доза генов, а значит, и продуктов генов!).

3. Дигибридное скрещивание. Третий закон Менделя

Изучив наследование одной пары аллелей, Мендель решил проследить наследование двух признаков одновременно. Для этой цели он использовал гомозиготные растения гороха, отличающиеся по двум парам альтернативных признаков: семена желтые гладкие и зеленые морщинистые. Такое скрещивание, при котором родители различаются по двум парам альтернативных признаков, называется дигибридным . Если изучаются 3 и более пар признаков, то скрещивание полигибридное .

В результате такого скрещивания в первом поколении Мендель получил растения с желтыми гладкими семенами. Этот результат показал, что закон единообразия гибридов первого поколения проявляется не только при моногибридном, но и при полигибридном скрещивании, если родительские формы гомозиготны.

Затем Мендель скрестил гибриды первого поколения между собой. Для анализа результата этого скрещивания используем решетку Пеннета.

В результате свободного комбинирования 4 типов гамет в зиготы попадают гены во всех возможных 16 ти комбинациях . В потомстве выявляются 4 фенотипических класса : примерно 9 частей растений с горошинами желтыми гладкими (А-В -), 3 части – с желтыми морщинистыми (А-вв ), 3 части – с зелеными гладкими (ааВ -), 1 часть – с зелеными морщинистыми (аавв ), т. е. расщепление 9:3:3:1 . Два фенотипических класса из 4 х – абсолютно новые , отличные от родительских форм. При этом количество генотипических классов равно 9.

P : AABB × aabb

G : AB ab

F 1 : AaBb

P(F 1): AaBb × AaBb

Если проанализировать расщепление отдельно по каждой из пар альтернативных признаков (желтый и зеленый цвет, гладкая и морщинистая поверхность),

~3:1→ желтые: зеленые,

то получится:

~ 3:1→ гладкие: морщинистые,

т. е. каждая пара признаков дала расщепление в F 2 независимо от другой пары. Это явилось результатом случайного комбинирования генов при образовании зигот, что и привело к образованию двух новых фенотипических классов, отличных от родительских форм.

Отсюда вытекает третий закон Менделя закон независимого комбинирования признаков : При дигибридном (полигибридном) скрещивании гомозиготных организмов во втором поколении наблюдается независимое комбинирование признаков и соответствующих им генов разных аллельных пар.

Для объяснения результатов скрещивания, проведенного Г. Менделем, У. Бэтсон (1902 г.) предложил гипотезу «чистоты гамет» . Ее можно свести к следующим двум основным положениям:

1) из каждой пары аллелей в гамету попадает только один ген;

2) у гибридного организма гены не смешиваются, а находятся в чистом аллельном состоянии.

Эта гипотеза после открытия механизмов мейоза стала очевидным фактом и называется теперь «правилом », или «законом » чистоты гамет. Её цитологический смысл заключается в том, что в первом делении мейоза гомологичные хромосомы, несмотря на то, что они действительно сливаются в одно целое (процесс конъюгации), всё же сохраняют свою дискретность и расходятся в дочерние клетки, а во втором делении мейоза в каждую гамету попадает только одна хроматида и, соответственно, один аллель из каждой аллельной пары.