Построение графиков онлайн. Графики и основные свойства элементарных функций Называется функция y x

1. Дробно-линейная функция и ее график

Функция вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, называется дробно-рациональной функцией.

С понятием рациональных чисел вы уже наверняка знакомы. Аналогично рациональные функции – это функции, которые можно представить как частное двух многочленов.

Если дробно-рациональная функция представляет собой частное двух линейных функций – многочленов первой степени, т.е. функцию вида

y = (ax + b) / (cx + d), то ее называют дробно-линейной.

Заметим, что в функции y = (ax + b) / (cx + d), c ≠ 0 (иначе функция становится линейной y = ax/d + b/d) и что a/c ≠ b/d (иначе функция константа). Дробно-линейная функция определена при всех действительных числах, кроме x = -d/c. Графики дробно-линейных функций по форме не отличаются от известного вам графика y = 1/x. Кривая, являющаяся графиком функции y = 1/x, называется гиперболой . При неограниченном увеличении x по абсолютной величине функция y = 1/x неограниченно уменьшается по абсолютной величине и обе ветки графика приближаются к оси абсцисс: правая приближается сверху, а левая – снизу. Прямые, к которым приближаются ветки гиперболы, называются ее асимптотами .

Пример 1.

y = (2x + 1) / (x – 3).

Решение.

Выделим целую часть: (2x + 1) / (x – 3) = 2 + 7/(x – 3).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 3 единичных отрезка вправо, растяжением вдоль оси Oy в 7 раз и сдвигом на 2 единичных отрезка вверх.

Любую дробь y = (ax + b) / (cx + d) можно записать аналогичным образом, выделив «целую часть». Следовательно, графики всех дробно-линейных функций есть гиперболы, различным образом сдвинутые вдоль координатных осей и растянутые по оси Oy.

Для построения графика какой-нибудь произвольной дробно-линейной функции совсем не обязательно дробь, задающую эту функцию, преобразовывать. Поскольку мы знаем, что график есть гипербола, будет достаточно найти прямые, к которым приближаются ее ветки – асимптоты гиперболы x = -d/c и y = a/c.

Пример 2.

Найти асимптоты графика функции y = (3x + 5)/(2x + 2).

Решение.

Функция не определена, при x = -1. Значит, прямая x = -1 служит вертикальной асимптотой. Для нахождения горизонтальной асимптоты, выясним, к чему приближаются значения функции y(x), когда аргумент x возрастает по абсолютной величине.

Для этого разделим числитель и знаменатель дроби на x:

y = (3 + 5/x) / (2 + 2/x).

При x → ∞ дробь будет стремиться к 3/2. Значит, горизонтальная асимптота – это прямая y = 3/2.

Пример 3.

Построить график функции y = (2x + 1)/(x + 1).

Решение.

Выделим у дроби «целую часть»:

(2x + 1) / (x + 1) = (2x + 2 – 1) / (x + 1) = 2(x + 1) / (x + 1) – 1/(x + 1) =

2 – 1/(x + 1).

Теперь легко видеть, что график этой функции получается из графика функции y = 1/x следующими преобразованиями: сдвигом на 1 единицу влево, симметричным отображением относительно Ox и сдвигом на 2 единичных отрезка вверх по оси Oy.

Область определения D(y) = (-∞; -1)ᴗ(-1; +∞).

Область значений E(y) = (-∞; 2)ᴗ(2; +∞).

Точки пересечения с осями: c Oy: (0; 1); c Ox: (-1/2; 0). Функция возрастает на каждом из промежутков области определения.

Ответ: рисунок 1.

2. Дробно-рациональная функция

Рассмотрим дробно-рациональную функцию вида y = P(x) / Q(x), где P(x) и Q(x) – многочлены, степени выше первой.

Примеры таких рациональных функций:

y = (x 3 – 5x + 6) / (x 7 – 6) или y = (x – 2) 2 (x + 1) / (x 2 + 3).

Если функция y = P(x) / Q(x) представляет собой частное двух многочленов степени выше первой, то ее график будет, как правило, сложнее, и построить его точно, со всеми деталями бывает иногда трудно. Однако, часто достаточно применить приемы, аналогичные тем, с которыми мы уже познакомились выше.

Пусть дробь – правильная (n < m). Известно, что любую несократимую рациональную дробь можно представить, и притом единственным образом, в виде суммы конечного числа элементарных дробей, вид которых определяется разложением знаменателя дроби Q(x) в произведение действительных сомножителей:

P(x)/Q(x) = A 1 /(x – K 1) m1 + A 2 /(x – K 1) m1-1 + … + A m1 /(x – K 1) + …+

L 1 /(x – K s) ms + L 2 /(x – K s) ms-1 + … + L ms /(x – K s) + …+

+ (B 1 x + C 1) / (x 2 +p 1 x + q 1) m1 + … + (B m1 x + C m1) / (x 2 +p 1 x + q 1) + …+

+ (M 1 x + N 1) / (x 2 +p t x + q t) m1 + … + (M m1 x + N m1) / (x 2 +p t x + q t).

Очевидно, что график дробно-рациональной функции можно получить как сумму графиков элементарных дробей.

Построение графиков дробно-рациональных функций

Рассмотрим несколько способов построения графиков дробно-рациональной функции.

Пример 4.

Построить график функции y = 1/x 2 .

Решение.

Используем график функции y = x 2 для построения графика y = 1/x 2 и воспользуемся приемом «деления» графиков.

Область определения D(y) = (-∞; 0)ᴗ(0; +∞).

Область значений E(y) = (0; +∞).

Точек пересечения с осями нет. Функция четная. Возрастает при все х из интервала (-∞; 0), убывает при x от 0 до +∞.

Ответ: рисунок 2.

Пример 5.

Построить график функции y = (x 2 – 4x + 3) / (9 – 3x).

Решение.

Область определения D(y) = (-∞; 3)ᴗ(3; +∞).

y = (x 2 – 4x + 3) / (9 – 3x) = (x – 3)(x – 1) / (-3(x – 3)) = -(x – 1)/3 = -x/3 + 1/3.

Здесь мы использовали прием разложения на множители, сокращения и приведения к линейной функции.

Ответ: рисунок 3.

Пример 6.

Построить график функции y = (x 2 – 1)/(x 2 + 1).

Решение.

Область определения D(y) = R. Так как функция четная, то график симметричен относительно оси ординат. Прежде чем строить график, опять преобразуем выражение, выделив целую часть:

y = (x 2 – 1)/(x 2 + 1) = 1 – 2/(x 2 + 1).

Заметим, что выделение целой части в формуле дробно-рациональной функции является одним из основных при построении графиков.

Если x → ±∞, то y → 1, т.е. прямая y = 1 является горизонтальной асимптотой.

Ответ: рисунок 4.

Пример 7.

Рассмотрим функцию y = x/(x 2 + 1) и попробуем точно найти наибольшее ее значение, т.е. самую высокую точку правой половины графика. Чтобы точно построить этот график, сегодняшних знаний недостаточно. Очевидно, что наша кривая не может «подняться» очень высоко, т.к. знаменатель довольно быстро начинает «обгонять» числитель. Посмотрим, может ли значение функции равняться 1. Для этого нужно решить уравнение x 2 + 1 = x, x 2 – x + 1 = 0. Это уравнение не имеет действительных корней. Значит, наше предположение не верно. Чтобы найти самое большое значение функции, надо узнать, при каком самом большом А уравнение А = x/(x 2 + 1) будет иметь решение. Заменим исходное уравнение квадратным: Аx 2 – x + А = 0. Это уравнение имеет решение, когда 1 – 4А 2 ≥ 0. Отсюда находим наибольшее значение А = 1/2.

Ответ: рисунок 5, max y(x) = ½.

Остались вопросы? Не знаете, как строить графики функций?
Чтобы получить помощь репетитора – зарегистрируйтесь .
Первый урок – бесплатно!

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Функции и их графики - одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она... мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, - линейная функция и парабола - слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции - это все-таки арифметика. Преобразования выражений - это алгебра. А математика - наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики» .

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

График функции - прямая с выколотой точкой

2. Построим график функции

Выделим в формуле функции целую часть:

График функции - гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части - полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

4. Построим график функции

Главное - правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции

Область определения функции:

Нули функции: и

Прямая x = 0 (ось Y) - вертикальная асимптота функции. Асимптота - прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.

6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки - 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты:

Если x стремится к бесконечности, то у стремится к 1. Значит, - горизонтальная асимптота.

Вот эскиз графика:

Еще один интересный прием - сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции - положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При , значение {cos x} равно единице. Значение функции в этих точках будет равно

9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции - в точках, где то есть при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?

Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции - все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

Если или

В точке производная меняет знак с «минуса» на «плюс», - точка минимума функции.

В точке производная меняет знак с «плюса» на «минус», - точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции:

1. Область определения функции

2. Область значений функции

3. Четность - нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

Основные элементарные функции, присущие им свойства и соответствующие графики – одни из азов математических знаний, схожих по степени важности с таблицей умножения. Элементарные функции являются базой, опорой для изучения всех теоретических вопросов.

Статья ниже дает ключевой материал по теме основных элементарных функций. Мы введем термины, дадим им определения; подробно изучим каждый вид элементарных функций, разберем их свойства.

Выделяют следующие виды основных элементарных функций:

Определение 1

  • постоянная функция (константа);
  • корень n -ой степени;
  • степенная функция;
  • показательная функция;
  • логарифмическая функция;
  • тригонометрические функции;
  • братные тригонометрические функции.

Постоянная функция определяется формулой: y = C (C – некое действительное число) и имеет также название: константа. Данная функция определяет соответствие любому действительному значению независимой переменной x одного и того же значения переменной y – значение C .

График константы – это прямая, которая параллельна оси абсцисс и проходит через точку, имеющую координаты (0 , С) . Для наглядности приведем графики постоянных функций y = 5 , y = - 2 , y = 3 , y = 3 (на чертеже обозначено черным, красным и синим цветами соответственно).

Определение 2

Данная элементарная функция определяется формулой y = x n (n – натуральное число больше единицы).

Рассмотрим две вариации функции.

  1. Корень n -й степени, n – четное число

Для наглядности укажем чертеж, на котором изображены графики таких функций: y = x , y = x 4 и y = x 8 . Эти функции отмечены цветом: черный, красный и синий соответственно.

Похожий вид у графиков функции четной степени при иных значениях показателя.

Определение 3

Свойства функции корень n-ой степени, n – четное число

  • область определения – множество всех неотрицательных действительных чисел [ 0 , + ∞) ;
  • когда x = 0 , функция y = x n имеет значение, равное нулю;
  • данная функция- функция общего вида (не является ни четной, ни нечетной);
  • область значений: [ 0 , + ∞) ;
  • данная функция y = x n при четных показателях корня возрастает на всей области определения;
  • функция обладает выпуклостью с направлением вверх на всей области определения;
  • отсутствуют точки перегиба;
  • асимптоты отсутствуют;
  • график функции при четных n проходит через точки (0 ; 0) и (1 ; 1) .
  1. Корень n -й степени, n – нечетное число

Такая функция определена на всем множестве действительных чисел. Для наглядности рассмотрим графики функций y = x 3 , y = x 5 и x 9 . На чертеже они обозначены цветами: черный, красный и синий цвета кривых соответственно.

Иные нечетные значения показателя корня функции y = x n дадут график аналогичного вида.

Определение 4

Свойства функции корень n-ой степени, n – нечетное число

  • область определения – множество всех действительных чисел;
  • данная функция – нечетная;
  • область значений – множество всех действительных чисел;
  • функция y = x n при нечетных показателях корня возрастает на всей области определения;
  • функция имеет вогнутость на промежутке (- ∞ ; 0 ] и выпуклость на промежутке [ 0 , + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) ;
  • асимптоты отсутствуют;
  • график функции при нечетных n проходит через точки (- 1 ; - 1) , (0 ; 0) и (1 ; 1) .

Степенная функция

Определение 5

Степенная функция определяется формулой y = x a .

Вид графиков и свойства функции зависят от значения показателя степени.

  • когда степенная функция имеет целый показатель a , то вид графика степенной функции и ее свойства зависят от того, четный или нечетный показатель степени, а также того, какой знак имеет показатель степени. Рассмотрим все эти частные случаи подробнее ниже;
  • показатель степени может быть дробным или иррациональным – в зависимости от этого также варьируется вид графиков и свойства функции. Мы разберем частные случаи, задав несколько условий: 0 < a < 1 ; a > 1 ; - 1 < a < 0 и a < - 1 ;
  • степенная функция может иметь нулевой показатель, этот случай также ниже разберем подробнее.

Разберем степенную функцию y = x a , когда a – нечетное положительное число, например, a = 1 , 3 , 5 …

Для наглядности укажем графики таких степенных функций: y = x (черный цвет графика), y = x 3 (синий цвет графика), y = x 5 (красный цвет графика), y = x 7 (зеленый цвет графика). Когда a = 1 , получаем линейную функцию y = x .

Определение 6

Свойства степенной функции, когда показатель степени – нечетный положительный

  • функция является возрастающей при x ∈ (- ∞ ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0 ] и вогнутость при x ∈ [ 0 ; + ∞) (исключая линейную функцию);
  • точка перегиба имеет координаты (0 ; 0) (исключая линейную функцию);
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; - 1) , (0 ; 0) , (1 ; 1) .

Разберем степенную функцию y = x a , когда a – четное положительное число, например, a = 2 , 4 , 6 …

Для наглядности укажем графики таких степенных функций: y = x 2 (черный цвет графика), y = x 4 (синий цвет графика), y = x 8 (красный цвет графика). Когда a = 2 , получаем квадратичную функцию, график которой – квадратичная парабола.

Определение 7

Свойства степенной функции, когда показатель степени – четный положительный:

  • область определения: x ∈ (- ∞ ; + ∞) ;
  • убывающей при x ∈ (- ∞ ; 0 ] ;
  • функция имеет вогнутость при x ∈ (- ∞ ; + ∞) ;
  • очки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (- 1 ; 1) , (0 ; 0) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – нечетное отрицательное число: y = x - 9 (черный цвет графика); y = x - 5 (синий цвет графика); y = x - 3 (красный цвет графика); y = x - 1 (зеленый цвет графика). Когда a = - 1 , получаем обратную пропорциональность, график которой – гипербола.

Определение 8

Свойства степенной функции, когда показатель степени – нечетный отрицательный:

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = - ∞ , lim x → 0 + 0 x a = + ∞ при a = - 1 , - 3 , - 5 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • область значений: y ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • функция является нечетной, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ - ∞ ; 0 ∪ (0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (- ∞ ; 0) и вогнутость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда а = - 1 , - 3 , - 5 , . . . .

  • точки прохождения функции: (- 1 ; - 1) , (1 ; 1) .

На рисунке ниже приведены примеры графиков степенной функции y = x a , когда a – четное отрицательное число: y = x - 8 (черный цвет графика); y = x - 4 (синий цвет графика); y = x - 2 (красный цвет графика).

Определение 9

Свойства степенной функции, когда показатель степени – четный отрицательный:

  • область определения: x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;

Когда х = 0 , получаем разрыв второго рода, поскольку lim x → 0 - 0 x a = + ∞ , lim x → 0 + 0 x a = + ∞ при a = - 2 , - 4 , - 6 , … . Таким образом, прямая х = 0 – вертикальная асимптота;

  • функция является четной, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ (- ∞ ; 0) и убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ (- ∞ ; 0) ∪ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 , поскольку:

k = lim x → ∞ x a x = 0 , b = lim x → ∞ (x a - k x) = 0 ⇒ y = k x + b = 0 , когда a = - 2 , - 4 , - 6 , . . . .

  • точки прохождения функции: (- 1 ; 1) , (1 ; 1) .

С самого начала обратите внимание на следующий аспект: в случае, когда a – положительная дробь с нечетным знаменателем, некоторые авторы принимают за область определения этой степенной функции интервал - ∞ ; + ∞ , оговаривая при этом, что показатель a – несократимая дробь. На данный момент авторы многих учебных изданий по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции, где показатель – дробь с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придержемся именно такой позиции: возьмем за область определения степенных функций с дробными положительными показателями степени множество [ 0 ; + ∞) . Рекомендация для учащихся: выяснить взгляд преподавателя на этот момент во избежание разногласий.

Итак, разберем степенную функцию y = x a , когда показатель степени – рациональное или иррациональное число при условии, что 0 < a < 1 .

Проиллюстрируем графиками степенные функции y = x a , когда a = 11 12 (черный цвет графика); a = 5 7 (красный цвет графика); a = 1 3 (синий цвет графика); a = 2 5 (зеленый цвет графика).

Иные значения показателя степени a (при условии 0 < a < 1) дадут аналогичный вид графика.

Определение 10

Свойства степенной функции при 0 < a < 1:

  • область значений: y ∈ [ 0 ; + ∞) ;
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет выпуклость при x ∈ (0 ; + ∞) ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Разберем степенную функцию y = x a , когда показатель степени – нецелое рациональное или иррациональное число при условии, что a > 1 .

Проиллюстрируем графиками степенную функцию y = x a в заданных условиях на примере таких функций: y = x 5 4 , y = x 4 3 , y = x 7 3 , y = x 3 π (черный, красный, синий, зеленый цвет графиков соответственно).

Иные значения показателя степени а при условии a > 1 дадут похожий вид графика.

Определение 11

Свойства степенной функции при a > 1:

  • область определения: x ∈ [ 0 ; + ∞) ;
  • область значений: y ∈ [ 0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является возрастающей при x ∈ [ 0 ; + ∞) ;
  • функция имеет вогнутость при x ∈ (0 ; + ∞) (когда 1 < a < 2) и выпуклость при x ∈ [ 0 ; + ∞) (когда a > 2);
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точки прохождения функции: (0 ; 0) , (1 ; 1) .

Обращаем ваше внимание!Когда a – отрицательная дробь с нечетным знаменателем, в работах некоторых авторов встречается взгляд, что область определения в данном случае – интервал - ∞ ; 0 ∪ (0 ; + ∞) с оговоркой, что показатель степени a – несократимая дробь. На данный момент авторы учебных материалов по алгебре и началам анализа НЕ ОПРЕДЕЛЯЮТ степенные функции с показателем в виде дроби с нечетным знаменателем при отрицательных значениях аргумента. Далее мы придерживаемся именно такого взгляда: возьмем за область определения степенных функций с дробными отрицательными показателями множество (0 ; + ∞) . Рекомендация для учащихся: уточните видение вашего преподавателя на этот момент во избежание разногласий.

Продолжаем тему и разбираем степенную функцию y = x a при условии: - 1 < a < 0 .

Приведем чертеж графиков следующий функций: y = x - 5 6 , y = x - 2 3 , y = x - 1 2 2 , y = x - 1 7 (черный, красный, синий, зеленый цвет линий соответственно).

Определение 12

Свойства степенной функции при - 1 < a < 0:

lim x → 0 + 0 x a = + ∞ , когда - 1 < a < 0 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ 0 ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • точки перегиба отсутствуют;

На чертеже ниже приведены графики степенных функций y = x - 5 4 , y = x - 5 3 , y = x - 6 , y = x - 24 7 (черный, красный, синий, зеленый цвета кривых соответственно).

Определение 13

Свойства степенной функции при a < - 1:

  • область определения: x ∈ 0 ; + ∞ ;

lim x → 0 + 0 x a = + ∞ , когда a < - 1 , т.е. х = 0 – вертикальная асимптота;

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • функция является убывающей при x ∈ 0 ; + ∞ ;
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 ;
  • точка прохождения функции: (1 ; 1) .

Когда a = 0 и х ≠ 0 , получим функцию y = x 0 = 1 , определяющую прямую, из которой исключена точка (0 ; 1) (условились, что выражению 0 0 не будет придаваться никакого значения).

Показательная функция имеет вид y = a x , где а > 0 и а ≠ 1 , и график этой функции выглядит различно, исходя из значения основания a . Рассмотрим частные случаи.

Сначала разберем ситуацию, когда основание показательной функции имеет значение от нуля до единицы (0 < a < 1) . Наглядным примером послужат графики функций при a = 1 2 (синий цвет кривой) и a = 5 6 (красный цвет кривой).

Подобный же вид будут иметь графики показательной функции при иных значениях основания при условии 0 < a < 1 .

Определение 14

Свойства показательной функции, когда основание меньше единицы:

  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание меньше единицы, является убывающей на всей области определения;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к + ∞ ;

Теперь рассмотрим случай, когда основание показательной функции больше, чем единица (а > 1) .

Проиллюстрируем этот частный случай графиком показательных функций y = 3 2 x (синий цвет кривой) и y = e x (красный цвет графика).

Иные значения основания, большие единицы, дадут аналогичный вид графика показательной функции.

Определение 15

Свойства показательной функции, когда основание больше единицы:

  • область определения – все множество действительных чисел;
  • область значений: y ∈ (0 ; + ∞) ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • показательная функция, у которой основание больше единицы, является возрастающей при x ∈ - ∞ ; + ∞ ;
  • функция имеет вогнутость при x ∈ - ∞ ; + ∞ ;
  • точки перегиба отсутствуют;
  • горизонтальная асимптота – прямая y = 0 при переменной x , стремящейся к - ∞ ;
  • точка прохождения функции: (0 ; 1) .

Логарифмическая функция имеет вид y = log a (x) , где a > 0 , a ≠ 1 .

Такая функция определена только при положительных значениях аргумента: при x ∈ 0 ; + ∞ .

График логарифмической функции имеет различный вид, исходя из значения основания а.

Рассмотрим сначала ситуацию, когда 0 < a < 1 . Продемонстрируем этот частный случай графиком логарифмической функции при a = 1 2 (синий цвет кривой) и а = 5 6 (красный цвет кривой).

Иные значения основания, не большие единицы, дадут аналогичный вид графика.

Определение 16

Свойства логарифмической функции, когда основание меньше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к + ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая
  • функция имеет вогнутость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;

Теперь разберем частный случай, когда основание логарифмической функции больше единицы: а > 1 . На чертеже ниже –графики логарифмических функций y = log 3 2 x и y = ln x (синий и красный цвета графиков соответственно).

Иные значения основания больше единицы дадут аналогичный вид графика.

Определение 17

Свойства логарифмической функции, когда основание больше единицы:

  • область определения: x ∈ 0 ; + ∞ . Когда х стремится к нулю справа, значения функции стремятся к - ∞ ;
  • область значений: y ∈ - ∞ ; + ∞ (все множество действительных чисел);
  • данная функция – функция общего вида (не является ни нечетной, ни четной);
  • логарифмическая функция является возрастающей при x ∈ 0 ; + ∞ ;
  • функция имеет выпуклость при x ∈ 0 ; + ∞ ;
  • точки перегиба отсутствуют;
  • асимптоты отсутствуют;
  • точка прохождения функции: (1 ; 0) .

Тригонометрические функции – это синус, косинус, тангенс и котангенс. Разберем свойства каждой из них и соответствующие графики.

В общем для всех тригонометрических функций характерно свойство периодичности, т.е. когда значения функций повторяются при разных значениях аргумента, отличающихся друг от друга на величину периода f (x + T) = f (x) (T – период). Таким образом, в списке свойств тригонометрических функций добавляется пункт «наименьший положительный период». Помимо этого, будем указывать такие значения аргумента, при которых соответствующая функция обращается в нуль.

  1. Функция синус: y = sin (х)

График данной функции называется синусоида.

Определение 18

Свойства функции синус:

  • область определения: все множество действительных чисел x ∈ - ∞ ; + ∞ ;
  • функция обращается в нуль, когда x = π · k , где k ∈ Z (Z – множество целых чисел);
  • функция является возрастающей при x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z и убывающей при x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z ;
  • функция синус имеет локальные максимумы в точках π 2 + 2 π · k ; 1 и локальные минимумы в точках - π 2 + 2 π · k ; - 1 , k ∈ Z ;
  • функция синус вогнутая, когда x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и выпуклая, когда x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • асимптоты отсутствуют.
  1. Функция косинус: y = cos (х)

График данной функции называется косинусоида.

Определение 19

Свойства функции косинус:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • наименьший положительный период: Т = 2 π ;
  • область значений: y ∈ - 1 ; 1 ;
  • данная функция – четная, поскольку y (- x) = y (x) ;
  • функция является возрастающей при x ∈ - π + 2 π · k ; 2 π · k , k ∈ Z и убывающей при x ∈ 2 π · k ; π + 2 π · k , k ∈ Z ;
  • функция косинус имеет локальные максимумы в точках 2 π · k ; 1 , k ∈ Z и локальные минимумы в точках π + 2 π · k ; - 1 , k ∈ z ;
  • функция косинус вогнутая, когда x ∈ π 2 + 2 π · k ; 3 π 2 + 2 π · k , k ∈ Z и выпуклая, когда x ∈ - π 2 + 2 π · k ; π 2 + 2 π · k , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z
  • асимптоты отсутствуют.
  1. Функция тангенс: y = t g (х)

График данной функции называется тангенсоида.

Определение 20

Свойства функции тангенс:

  • область определения: x ∈ - π 2 + π · k ; π 2 + π · k , где k ∈ Z (Z – множество целых чисел);
  • Поведение функции тангенс на границе области определения lim x → π 2 + π · k + 0 t g (x) = - ∞ , lim x → π 2 + π · k - 0 t g (x) = + ∞ . Таким образом, прямые x = π 2 + π · k k ∈ Z – вертикальные асимптоты;
  • функция обращается в нуль, когда x = π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей при - π 2 + π · k ; π 2 + π · k , k ∈ Z ;
  • функция тангенс является вогнутой при x ∈ [ π · k ; π 2 + π · k) , k ∈ Z и выпуклой при x ∈ (- π 2 + π · k ; π · k ] , k ∈ Z ;
  • точки перегиба имеют координаты π · k ; 0 , k ∈ Z ;
  1. Функция котангенс: y = c t g (х)

График данной функции называется котангенсоида.

Определение 21

Свойства функции котангенс:

  • область определения: x ∈ (π · k ; π + π · k) , где k ∈ Z (Z – множество целых чисел);

Поведение функции котангенс на границе области определения lim x → π · k + 0 t g (x) = + ∞ , lim x → π · k - 0 t g (x) = - ∞ . Таким образом, прямые x = π · k k ∈ Z – вертикальные асимптоты;

  • наименьший положительный период: Т = π ;
  • функция обращается в нуль, когда x = π 2 + π · k при k ∈ Z (Z – множество целых чисел);
  • область значений: y ∈ - ∞ ; + ∞ ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является убывающей при x ∈ π · k ; π + π · k , k ∈ Z ;
  • функция котангенс является вогнутой при x ∈ (π · k ; π 2 + π · k ] , k ∈ Z и выпуклой при x ∈ [ - π 2 + π · k ; π · k) , k ∈ Z ;
  • точки перегиба имеют координаты π 2 + π · k ; 0 , k ∈ Z ;
  • наклонные и горизонтальные асимптоты отсутствуют.

Обратные тригонометрические функции – это арксинус, арккосинус, арктангенс и арккотангенс. Зачастую, в связи с наличием приставки «арк» в названии, обратные тригонометрические функции называют аркфункциями.

  1. Функция арксинус: y = a r c sin (х)

Определение 22

Свойства функции арксинус:

  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция арксинус имеет вогнутость при x ∈ 0 ; 1 и выпуклость при x ∈ - 1 ; 0 ;
  • точки перегиба имеют координаты (0 ; 0) , она же – нуль функции;
  • асимптоты отсутствуют.
  1. Функция арккосинус: y = a r c cos (х)

Определение 23

Свойства функции арккосинус:

  • область определения: x ∈ - 1 ; 1 ;
  • область значений: y ∈ 0 ; π ;
  • данная функция - общего вида (ни четная, ни нечетная);
  • функция является убывающей на всей области определения;
  • функция арккосинус имеет вогнутость при x ∈ - 1 ; 0 и выпуклость при x ∈ 0 ; 1 ;
  • точки перегиба имеют координаты 0 ; π 2 ;
  • асимптоты отсутствуют.
  1. Функция арктангенс: y = a r c t g (х)

Определение 24

Свойства функции арктангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ - π 2 ; π 2 ;
  • данная функция – нечетная, поскольку y (- x) = - y (x) ;
  • функция является возрастающей на всей области определения;
  • функция арктангенс имеет вогнутость при x ∈ (- ∞ ; 0 ] и выпуклость при x ∈ [ 0 ; + ∞) ;
  • точка перегиба имеет координаты (0 ; 0) , она же – нуль функции;
  • горизонтальные асимптоты – прямые y = - π 2 при x → - ∞ и y = π 2 при x → + ∞ (на рисунке асимптоты – это линии зеленого цвета).
  1. Функция арккотангенс: y = a r c c t g (х)

Определение 25

Свойства функции арккотангенс:

  • область определения: x ∈ - ∞ ; + ∞ ;
  • область значений: y ∈ (0 ; π) ;
  • данная функция – общего вида;
  • функция является убывающей на всей области определения;
  • функция арккотангенс имеет вогнутость при x ∈ [ 0 ; + ∞) и выпуклость при x ∈ (- ∞ ; 0 ] ;
  • точка перегиба имеет координаты 0 ; π 2 ;
  • горизонтальные асимптоты – прямые y = π при x → - ∞ (на чертеже – линия зеленого цвета) и y = 0 при x → + ∞ .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Посмотрим, как исследовать функцию с помощью графика. Оказывается, глядя на график, можно узнать всё, что нас интересует, а именно:

  • область определения функции
  • область значений функции
  • нули функции
  • промежутки возрастания и убывания
  • точки максимума и минимума
  • наибольшее и наименьшее значение функции на отрезке.

Уточним терминологию:

Абсцисса - это координата точки по горизонтали.
Ордината - координата по вертикали.
Ось абсцисс - горизонтальная ось, чаще всего называемая ось .
Ось ординат - вертикальная ось, или ось .

Аргумент - независимая переменная, от которой зависят значения функции. Чаще всего обозначается .
Другими словами, мы сами выбираем , подставляем в формулу функции и получаем .

Область определения функции - множество тех (и только тех) значений аргумента , при которых функция существует.
Обозначается: или .

На нашем рисунке область определения функции - это отрезок . Именно на этом отрезке нарисован график функции. Только здесь данная функция существует.

Область значений функции - это множество значений, которые принимает переменная . На нашем рисунке это отрезок - от самого нижнего до самого верхнего значения .

Нули функции - точки, где значение функции равно нулю, то есть . На нашем рисунке это точки и .

Значения функции положительны там, где . На нашем рисунке это промежутки и .
Значения функции отрицательны там, где . У нас это промежуток (или интервал) от до .

Важнейшие понятия - возрастание и убывание функции на некотором множестве . В качестве множества можно взять отрезок , интервал , объединение промежутков или всю числовую прямую.

Функция возрастает

Иными словами, чем больше , тем больше , то есть график идет вправо и вверх.

Функция убывает на множестве , если для любых и , принадлежащих множеству , из неравенства следует неравенство .

Для убывающей функции большему значению соответствует меньшее значение . График идет вправо и вниз.

На нашем рисунке функция возрастает на промежутке и убывает на промежутках и .

Определим, что такое точки максимума и минимума функции .

Точка максимума - это внутренняя точка области определения, такая, что значение функции в ней больше, чем во всех достаточно близких к ней точках.
Другими словами, точка максимума - такая точка, значение функции в которой больше , чем в соседних. Это локальный «холмик» на графике.

На нашем рисунке - точка максимума.

Точка минимума - внутренняя точка области определения, такая, что значение функции в ней меньше, чем во всех достаточно близких к ней точках.
То есть точка минимума - такая, что значение функции в ней меньше, чем в соседних. На графике это локальная «ямка».

На нашем рисунке - точка минимума.

Точка - граничная. Она не является внутренней точкой области определения и потому не подходит под определение точки максимума. Ведь у нее нет соседей слева. Точно так же и на нашем графике не может быть точкой минимума.

Точки максимума и минимума вместе называются точками экстремума функции . В нашем случае это и .

А что делать, если нужно найти, например, минимум функции на отрезке ? В данном случае ответ: . Потому что минимум функции - это ее значение в точке минимума.

Аналогично, максимум нашей функции равен . Он достигается в точке .

Можно сказать, что экстремумы функции равны и .

Иногда в задачах требуется найти наибольшее и наименьшее значения функции на заданном отрезке. Они не обязательно совпадают с экстремумами.

В нашем случае наименьшее значение функции на отрезке равно и совпадает с минимумом функции. А вот наибольшее ее значение на этом отрезке равно . Оно достигается в левом конце отрезка.

В любом случае наибольшее и наименьшее значения непрерывной функции на отрезке достигаются либо в точках экстремума, либо на концах отрезка.

После того, как вы действительно поймете, что такое функция (возможно, придется прочитать урок не один раз) вы с бóльшей уверенностью сможете решать задания с функциями.

В этом уроке мы разберем, как решать основные типы задач на функцию и графики функций.

Как получить значение функции

Рассмотрим задание. Функция задана формулой «y = 2x − 1 »

  1. Вычислить «y » при «x = 15 »
  2. Найти значение «x », при котором значение «y » равно «−19 ».

Для того, чтобы вычислить «y » при «x = 15 » достаточно подставить в функцию вместо «x » необходимое числовое значение.

Запись решения выглядит следующим образом.

y(15) = 2 · 15 − 1 = 30 − 1 = 29

Для того, чтобы найти «x » по известному «y », необходимо подставить вместо «y » в формулу функции числовое значение.

То есть теперь наоборот, для поиска «x » мы подставляем в функцию «y = 2x − 1 » вместо «y » число «−19 » .

−19 = 2x − 1

Мы получили линейное уравнение с неизвестным «x », которое решается по правилам решения линейных уравнений.

Запомните!

Не забывайте про правило переноса в уравнениях.

При переносе из левой части уравнения в правую (и наоборот) буква или число меняет знак на противоположный .

−19 = 2x − 1
0 = 2x − 1 + 19
−2x = −1 + 19
−2x = 18

Как и при решении линейного уравнения, чтобы найти неизвестное, сейчас требуется умножить и левую, и правую часть на «−1 » для смены знака.

−2x = 18 | · (−1)
2x = −18

Теперь разделим и левую, и правую часть на «2 », чтобы найти «x » .

2x = 18 | (: 2)
x = 9

Как проверить верно ли равенство для функции

Рассмотрим задание. Функция задана формулой «f(x) = 2 − 5x ».

Верно ли равенство «f(−2) = −18 »?

Чтобы проверить верно ли равенство, нужно подставить в функцию «f(x) = 2 − 5x » числовое значение «x = −2 » и сопоставить с тем, что получится при расчетах.

Важно!

Когда подставляете отрицательное число вместо «x », обязательно заключайте его в скобки.

Неправильно

Правильно

С помощью расчетов мы получили «f(−2) = 12 ».

Это означает, что «f(−2) = −18 » для функции «f(x) = 2 − 5x » не является верным равенством.

Как проверить, что точка принадлежит графику функции

Рассмотрим функцию «y = x 2 −5x + 6 »

Требуется выяснить, принадлежит ли графику этой функции точка с координатами (1; 2) .

Для этой задачи нет необходимости, строить график заданной функции.

Запомните!

Чтобы определить, принадлежит ли точка функции, достаточно подставить её координаты в функцию (координату по оси «Ox » вместо «x » и координату по оси «Oy » вместо «y »).

Если получится верное равенство , значит, точка принадлежит функции.

Вернемся к нашему заданию. Подставим в функцию «y = x 2 − 5x + 6 » координаты точки (1; 2) .

Вместо «x » подставим «1 ». Вместо «y » подставим «2 ».

2 = 1 2 − 5 · 1 + 6
2 = 1 − 5 + 6
2 = −4 + 6
2 = 2 (верно)

У нас получилось верное равенство, значит, точка с координатами (1; 2) принадлежит заданной функции.

Теперь проверим точку с координатами (0; 1) . Принадлежит ли она
функции «y = x 2 − 5x + 6 »?

Вместо «x » подставим «0 ». Вместо «y » подставим «1 ».

1 = 0 2 − 5 · 0 + 6
1 = 0 − 0 + 6
1 = 6 (неверно)

В этом случае мы не получили верное равенство. Это означает, что точка с координатами (0; 1) не принадлежит функции «y = x 2 − 5x + 6 »

Как получить координаты точки функции

С любого графика функции можно снять координаты точки. Затем необходимо убедиться, что при подстановке координат в формулу функции получается верное равенство.

Рассмотрим функцию «y(x) = −2x + 1 ». Её график мы уже строили в предыдущем уроке .


Найдем на графике функции «y(x) = −2x + 1 », чему равен «y » при x = 2 .

Для этого из значения «2 » на оси «Ox » проведем перпендикуляр к графику функции. Из точки пересечения перпендикуляра и графика функции проведем еще один перпендикуляр к оси «Oy ».


Полученное значение «−3 » на оси «Oy » и будет искомым значением «y ».

Убедимся, что мы правильно сняли координаты точки для x = 2
в функции «y(x) = −2x + 1 ».

Для этого мы подставим x = 2 в формулу функции «y(x) = −2x + 1 ». Если мы правильно провели перпендикуляр, мы также должны получить в итоге y = −3 .

y(2) = −2 · 2 + 1 = −4 + 1 = −3

При расчетах мы также получили y = −3 .

Значит, мы правильно получили координаты с графика функции.

Важно!

Все полученные координаты точки с графика функции обязательно проверяйте подстановкой значений «x » в функцию.

При подстановке числового значения «x » в функцию в результате должно получиться то же значение «y », которое вы получили на графике.

При получении координат точек с графика функции высока вероятность, что вы ошибетесь, т.к. проведение перпендикуляра к осям выполняется «на глазок».

Только подстановка значений в формулу функции дает точные результаты.