В основе генных мутаций лежит изменение. Виды мутаций, причины, примеры

Изменения нуклеотидных последовательностей ДНК.

Нескорректированные изменения химической структуры генов, воспроизводимые в последовательных циклах репликации и проявляющиеся у потомства в виде новых вариантов признаков, называют генными мутациями.

Изменения структуры ДНК, образующей ген, можно разделить на три группы. Мутации первой группы заключаются в замене одних оснований другими. Они составляют около 20% спонтанно возникающих генных изменений. Вторая группа мутаций обусловлена сдвигом рамки считывания, происходящим при изменении количества нуклеотидных пар в составе гена. Наконец, третью группу представляют мутации, связанные с изменением порядка нуклеотидных последовательностей в пределах гена (инверсии).

Мутации по типу замены азотистых оснований. Эти мутации происходят в силу ряда конкретных причин. Одной из них может быть возникающее случайно или под влиянием конкретных химических агентов изменение структуры основания, уже включенного в спираль ДНК. Если такая измененная форма основания остается не замеченной ферментами репарации, то при ближайшем цикле репликации она может присоединять к себе другой нуклеотид. Примером может служить дезаминирование цитозина, превращающегося в урацил самопроизвольно или под влиянием азотистой кислоты (рис. 3.18). Образующийся при этом урацил, не замеченный ферментом ДНК-гликозилазой, при репликации соединяется с аденином, который впоследствии присоединяет тимидиловый нуклеотид. В результате пара Ц-Г замещается в ДНК парой Т-А (рис. 3.19, I ). Дезаминирование метилированного цитозина превращает его в тимин (см. рис. 3.18). Тимидиловый нуклеотид, являясь естественным компонентом ДНК, не обнаруживается ферментами репарации как изменение и при следующей репликации присоединяет адениловый нуклеотид. В результате вместо пары Ц-Г в молекуле ДНК также появляется пара Т-А (рис. 3.19, II ).

Рис. 3.18. Спонтанное дезаминирование цитозина

Другой причиной замены оснований может быть ошибочное включение в синтезируемую цепь ДНК нуклеотида, несущего химически измененную форму основания или его аналог. Если эта ошибка остается не замеченной ферментами репликации и репарации, измененное основание включается в процесс репликации, что нередко приводит к замене одной пары на другую. Примером этого может служить присоединение в ходе репликации к аденину материнской цепи нуклеотида с 5-бромурацилом (5-БУ), аналогичного тимидиловому нуклеотиду. При последующей репликации 5-БУ охотнее присоединяет к себе не аденин, а гуанин. Гуанин в ходе дальнейшего удвоения образует комплементарную пару с цитозином. В итоге пара А-Т заменяется в молекуле ДНК парой Г-Ц (рис. 3.20).


Рис. 3. 19. Мутации по типу замены основания

(дезаминирование азотистых оснований в цепи ДНК):

I - превращение цитозина в урацил, замена Ц-Г-пары на Т-А-пару;

II - превращениеметил- цитозина в тимин, замена Ц-Г-пары на Т-А-пару

Из приведенных примеров видно, что изменения структуры молекулы ДНК по типу замены оснований возникают либо до, либо в процессе репликации первоначально в одной полинуклеотидной цепи. Если такие изменения не исправляются в ходе репарации, то при последующей репликации они становятся достоянием обеих цепей ДНК.

Рис. 3.20. Мутации по типу замены оснований

(включение аналога азотистого основания при репликации ДНК)

Следствием замены одной пары комплементарных нуклеотидов на другую является образование нового триплета в нуклеотидной последовательности ДНК, кодирующей последовательность аминокислот в пептидной цепи. Это может и не отразиться на структуре пептида в том случае, если новый триплет будет «синонимом» прежнего, т.е. будет кодировать ту же аминокислоту. Например, аминокислота валин шифруется четырьмя триплетами: ЦАА, ЦАГ, ЦАТ, ЦАЦ. Замена третьего основания в любом из этих триплетов не изменит его смысла (вырожденность генетического кода).

В том случае, когда вновь возникший триплет шифрует другую аминокислоту, изменяются структура пептидной цепи и свойства соответствующего белка. В зависимости от характера и места случившейся замены специфические свойства белка изменяются в разной степени. Известны случаи, когда замена лишь одной аминокислоты в пептиде существенно влияет на свойства белка, что проявляется в изменении более сложных признаков. Примером может служить изменение свойств гемоглобина человека при серповидно-клеточной анемии (рис. 3.21). В таком гемоглобине-(HbS) (в отличие от нормального НbА) - в р-глобиновых цепях в шестом положении глутаминовая кислота заменена валином. Это является следствием замены одного из оснований в триплете, шифрующем глутаминовую кислоту (ЦТТ или ЦТЦ). В результате появляется триплет, шифрующий валин (ЦАТ или ЦАЦ). В данном случае замена одной аминокислоты в пептиде существенно изменяет свойства глобина, входящего в состав гемоглобина (снижается его способность связываться с 02), у человека развиваются признаки серповидно-клеточной анемии.

В некоторых случаях замена одного основания на другое может привести к появлению одного из нонсенс-триплетов (АТТ, АТЦ, АЦТ), не шифрующего никакой аминокислоты. Последствием такой замены будет прерывание синтеза пептидной цепи. Подсчитано, что замены нуклеотидов в одном триплете приводят в 25% случаев к образованию триплетов-синонимов; в 2-3 -бессмысленных триплетов, в 70- 75% -к возникновению истинных генных мутаций.

Таким образом, мутации по типу замены оснований могут возникать как в результате спонтанных изменений структуры основания в одной из цепей уже существующей двойной спирали ДНК, так и в ходе репликации во вновь синтезируемой цепи. В том случае, если эти изменения не исправляются в процессе репарации (или, наоборот, возникают в ходе репарации), они фиксируются в обеих цепях и далее будут воспроизводиться в следующих циклах репликации. Следовательно, важным источником возникновения таких мутаций являются нарушения процессов репликации и репарации.

Мутации со сдвигом рамки считывания. Этот тип мутаций составляет значительную долю спонтанных мутаций. Они происходят вследствие выпадения или вставки в нуклеотидную последовательность ДНК одной или нескольких пар комплементарных нуклеотидов. Большая часть изученных мутаций, вызывающих сдвиг рамки, обнаружена в последовательностях, состоящих из одинаковых нуклеотидов.

Изменению числа нуклеотидных пар в цепи ДНК способствуют воздействия на генетический материал некоторых химических веществ, например акридиновых соединений. Деформируя структуру двойной спирали ДНК, они приводят к вставке дополнительных оснований или их выпадению при репликации. Примером служат мутации, полученные у фага Т4 при воздействии профлавина. Они состоят во включении или удалении всего одной нуклеотидной пары. Важной причиной изменения количества нуклеотидных пар в гене по типу крупных делений (выпадений) может быть рентгеновское облучение. У плодовой мухи, например, известна мутация гена, контролирующего окраску глаза, которая вызывается облучением и состоит в делении порядка 100 нуклеотидных пар.

Рис. 3.21. Плейотропный эффект замены одной аминокислоты в β-цепи гемоглобина человека, приводящей к развитию серповидно-клеточной анемии

Большое число мутаций по типу вставок происходит вследствие включения в последовательность нуклеотидов подвижных генетических элементов - транспозонов. Транспозоны - это достаточно протяженные нуклеотидные последовательности, встроенные в геномы эу- и прокариотических клеток, способные самопроизвольно менять свое положение (см. разд. 3.6.4.3). С определенной вероятностью вставки и делении могут возникать в результате ошибок рекомбинации при неравноценном внутригенном кроссинговере (рис. 3.22).

Рис. 3.22. Мутации со сдвигом рамки считывания (неравноценный обмен при внутригенном кроссинговере):

I - разрывы аллельпых генов в разных участках и обмен фрагментами между ними;

II - выпадение 3-й и 4-й пар нуклеотидов, сдвиг рамки считывания;

III -удвоение 3-й и 4-й пар нуклеотидов, сдвиг рамки считывания

Рис. 3.23. Следствие изменения количества нуклеотидных пар в молекуле ДНК

Сдвиг рамки считывания в результате вставки одного нуклеотида в кодогенную цепь приводит к изменению состава зашифрованного в ней пептида

При непрерывности считывания и неперекрываемости генетического кода изменение количества нуклеотидов, как правило, приводит к сдвигу рамки считывания и изменению смысла биологической информации, записанной в данной последовательности ДНК (рис. 3.23). Однако, если количество вставленных или утраченных нуклеотидов кратно трем, сдвига рамки может не произойти, но это приведет к включению дополнительных аминокислот или выпадению части их из полипептидной цепи. Возможным следствием сдвига рамки является возникновение нонсенс-триплетов, ведущее к синтезу укороченных пептидных цепей.

Мутации по типу инверсии нуклеотидных последовательностей в гене. Данный тип мутаций происходит вследствие поворота участка ДНК на 180°. Обычно этому предшествует образование молекулой ДНК петли, в пределах которой репликация идет в направлении, обратном правильному.

В пределах инвертированного участка нарушается считывание информации, в результате изменяется аминокислотная последовательность белка.

Генные мутации происходят на мо­лекулярном уровне и затрагивают, как правило, один или несколько нуклеотидов внутри отдельного гена. Этот тип мутаций можно разделить на две большие группы. Первую из них обуславливает сдвиг рамки счи­тывания. Ко второй группе относят генные мутации, связанные с заменой пар оснований. Последние составля­ют не более 20% спонтанных мутаций, остальные 80% мутаций происходят в результате различных делеций и вста­вок.

Мутации со сдвигом рамки считы­вания представляют собой вставки или выпадения одной или нескольких пар нуклеотидов. В зависи­мости от места нарушения изменяется то или иное количество кодонов. Соот­ветственно в белке могут появиться дополнительные аминокислоты или измениться их последовательность. Большая часть мутаций этого типа об­наружена в молекулах ДНК, состоя­щих из одинаковых оснований.

Типы замены осно­ ваний :

    Транзиции заключаются в замене одного пуринового на пуриновое осно­вание или одного пиримидинового на пиримидиновое основание

    Трансверсии , при которых пури­новое основание меняется на пирими­диновое или наоборот.

Значимость генных мутаций для жизнеспособности организма неоди­накова. Различные изменения в нуклеотидной последовательности ДНК по-разному проявляются в фенотипе. Не­которые «молчащие мутации» не ока­зывают влияния на структуру и функ­цию белка. Примером такой мутации может служить замена нуклеотидов, не приводящая к замене аминокислот.

По функциональному значению выделяют генные мутации:

    ведущие к полной потере функ­ции;

    в результате которых происходят количественные изменения мРНК и первичных белковых продуктов;

    доминантно-негативные, изменя­ющие свойства белковых молекул та­ким образом, что они оказывают по­вреждающее действие на жизнедея­тельность клеток.

Наибольшим повреждающим дейст­вием обладают так называемые нон сенс-мутации , связанные с появлени­ем кодонов-терминаторов, вызываю­щих остановку синтеза белка. Причем, чем ближе мутации к 5"-концу гена (к началу транскрипции), тем короче бу­дут белковые молекулы. Делеции или инсерции (вставки), некратные трем нуклеотидам и, следовательно, вызы­вающие сдвиг рамки считывания, мо­гут также приводить к преждевремен­ному окончанию синтеза белка или к образованию бессмысленного белка, который быстро деградирует.

Миссенс-мутации связаны с заме­ной нуклеотидов в кодирующей части гена. Фенотипически проявляется в виде замены аминокислоты в белке. В зависимости от природы аминокислот и функциональной значимости нару­шенного участка, наблюдается полная или частичная потеря функциональ­ной активности белка.

Сплайсинговые мутации затрагива­ют сайты на стыке экзонов и интронов и сопровождаются либо вырезанием экзона и образованием делегированно­го белка, либо вырезанием интронной области и трансляцией бессмысленно­го измененного белка. Как правило, та­кие мутации обусловливают тяжелое течение болезни.

Регуляторные мутации связаны с количественным нарушением в регуляторных областях гена. Они не при­водят к изменениям структуры и функции белков. Фенотипическое проявление таких мутаций определя­ется пороговым уровнем концентра­ции белка, при котором еще сохраня­ется его функция.

Динамические мутации или мутации экспансии представляют собой патоло­гическое увеличение числа тринуклеотидных повторов, локализованных в ко­дирующих и регуляторных частях гена. Многие тринуклеотидные последова­тельности характеризуются высоким уровнем популяционной изменчивости. Фенотипическое нарушение проявля­ется в случае превышения определенно­го критического уровня по числу повто­ров.

Хромосомные мутации

Этот тип мутаций объединяет хромо­сомные нарушения, связанные с изме­нением структур хромосом (хромосомные аберрации).

Хромосомные аберрации можно классифицировать, используя различ­ные подходы. В зависимости от того, в какой момент клеточного цикла - до или после репликации хромосом возникли перестройки - выделяют аберра­ции хромосомного ихроматидного ти­пов. Аберрации хромосомного типа воз­никают на предсинтетической стадии - G 1 фазе, когда хромосома представлена однонитевой структурой. Аберрации хроматидного типа возникают после репликации хромосом в фазах S и G 2 и затрагивают структуру одной из хрома-тид. В результате хромосома на стадии метафазы содержит одну измененную и одну нормальную хроматиды.

Если же перестройка произошла после реплика­ции и затронула обе хроматиды, появ­ляется изохроматидная аберрация. Морфологически она неотличима от аберраций хромосомного типа, хотя по происхождению относятся к хроматидному типу. Среди аберраций хромосом­ного и хроматидного типов выделяют простые и обменные аберрации. В их основе лежат нарушения одной или не­скольких хромосом. Простые аберра­ции - фрагменты (делеции) - возника­ют в результате простого разрыва хро­мосомы. В каждом случае при этом об­разуется 2 типа фрагментов - центри­ческие и ацентрические. Различают тер­минальные (концевые) и интерстициальные (средних участков хромосом) делеции или фрагменты.

Обменные аберрации очень разно­образны. В их основе лежит обмен уча­стками хромосом (или хроматид) меж­ду разными хромосомами (межхромосомный обмен) или внутри одной хро­мосомы (внутрихромосомный обмен) при перераспределении генетического материала. Обменные перестройки бывают двух типов: симметричные и асимметричные. Асимметричные об­мены приводят к образованию поли­центрических хромосом и ацентричес­ких фрагментов. При симметричных же обменах происходит соединение ацентрических фрагментов с центрическими, в результате чего хромосомы, вовлеченные в обменную аберрацию, остаются моноцентрическими.

Внутрихромосомные обмены могут происходить как внутри одного (внутриплечевой обмен), так и между обо­ими плечами хромосомы (межплечевой обмен). Кроме того, обмены могут быть простыми и сложными, когда в процесс вовлечены несколько хромо­сом. В результате могут образоваться необычные и достаточно сложные кон­фигурации хромосом. Любой обмен (симметричный и асимметричный, межхромосомный и внутрихромосомный) может быть полным (реципрок ным) или неполным (нереципрок ным) . При полном обмене происходит соединение всех поврежденных участ­ков, а при неполном обмене часть из них может остаться с открытым по­врежденным участком.

Геномные мутации

Геномные мутации изменяют число хромосом. Такие изменения возника­ют обычно при нарушении распреде­ления хромосом по дочерним клет­кам.

Различают два основных типа ге­номных мутаций:

    Полиплоидия и моноплоидия.

    Анеуплодия.

При полиплоидии число наборов негомологичных хромосом в кариотипе отличается от двух (Зn; 4n и т.д.). Это результат нарушений в митотическом цикле, когда удвоение хромосом происходит без последующего деления ядра и клетки. Одной из причин по­добного феномена может быть эндомитоз, при котором происходит блоки­рование ахроматического аппарата в клетке и сохранение ядерной мембра­ны в течение всего митотического цик­ла. Разновидностью эндомитоза явля­ется эндоредупликация - редуплика­ция хромосом, происходящая вне кле­точного деления. При эндоредуплика-ции как бы повторяются два следую­щих друг за другом S периода митоти­ческого цикла. В результате этого в по­следующем митозе будет наблюдаться двойной (тетраплоидный) набор хро­мосом. Такие мутации чаще всего при­водят к гибели плода еще в эмбриоге­незе. Триплоидия обнаруживается в 4%, а тетраплоидия приблизительно в 1% всех выкидышей. Для индивидуу­мов с такими кариотипами характерны многочисленные пороки развития, в том числе асимметричное телосложе­ние, слабоумие, гермафродитизм. Тетраплоидные эмбрионы погибают на ранних сроках беременности, эмбрио­ны же с триплоидными клетками из­редка выживают, но только если одно­временно с триплоидными содержат клетки с нормальным кариотипом. Впервые синдром триплоидии (69, XXY) был обнаружен у человека в 60-хх гг. XX в. В литературе описано око­ло 60 случаев триплоидии у детей. Максимальная продолжительность их жизни составила 7 дней.

Анеуплоидия - некратное гаплоид­ному уменьшение или увеличение чис­ла хромосом (2n+1; 2n+2; 2n-1 и т.д.) - возникает в результате ненормального поведения гомологических хромосом в мейозе или сестринских хроматид в митозе.

При нерасхождении хромосом на одной из стадий гаметогенеза в поло­вых клетках могут оказаться лишние хромосомы. В результате при последу­ющем слиянии с нормальными гапло­идными гаметами образуются зиготы 2n +1 - или трисомии по какой-либо из хромосом. Если же в гамете оказывает­ся на одну хромосому меньше, то при последующем оплодотворении образу­ется зигота 2 n - 1, или моносомик по одной из хромосом. Нерасхождение может затронуть не одну, а несколько пар хромосом, что ведет к трисомии или моносомии по нескольким хромо­сомам. Часто лишние хромосомы обус­ловливают депрессию развития или гибель особи, их несущей.

Т Е М А № 6 Типы наследования у человека

Менделирующие признаки

Всем эукариотическим организмам присущи открытые Г.Менделем общие закономерности наследования призна­ков. Для их изучения необходимо вспомнить основные термины и поня­тия, используемые в генетике. Глав­ный постулат Менделя, который он доказал в своих известных экспери­ментах на горохе огородном, состоит в том, что каждый признак определяется парой наследственных задатков, позже получивших название аллельных ге­нов. С развитием хромосомной теории наследственности выяснилось, что аллельные гены находятся в одинаковых локусах гомологичных хромосом и ко­дируют один и тот же признак. Пара аллельных генов может быть одинако­ва (АА) или (аа), тогда говорят, что особь гомозиготна по данному призна­ку. Если же аллельные гены в паре раз­ные (Аа), то особь по данному призна­ку гетерозиготна. Совокупность генов данного организма называется геноти­пом. Правда часто под генотипом по­нимают одну или несколько пар ал­лельных генов, которые отвечают за один и тот же признак. Совокупность признаков данного организма называ­ют фенотипом, фенотип формируется в результате взаимодействия генотипа с внешней средой.

Г. Мендель ввел понятия доминант­ных и рецессивных генов. Аллель, ко­торый определяет фенотип гетерозиготы, он назвал доминантным. Напри­мер, ген А в гетерозиготе Аа. Другой аллель, не проявляющий себя в гетеро­зиготном состоянии, назван им рецес­сивным. В нашем случае это ген а.

Основные закономерности наследования признаков по Менделю (закон единообразия гибридов первого поколения, расщепление на фенотипические классы гибридов второго поколения и независимого комбинирования генов) реализуются благодаря существованию закона чистоты гамет. Суть последнего состоит в том, что пара аллельных генов, определяющая тот или иной признак: а) никогда не смешивается; б) в процессе гаметогенеза расходится в разные гаметы, то есть в каждую из них попадает один ген из аллельной пары. Цитологически это обеспечивается мейозом: аллельные гены лежат в гомологичных хромосомах, которые в анафазе мейоза расходятся к разным полюсам и попадают в разные гаметы.

Генетика человека опирается на общие принципы, полученные первоначально в исследованиях на растениях и животных. Как и у них, у человека имеются менделирующие, т.е. наследуемые по законам, установленным Г. Meнделем, признаки. Для человека, как и для других эукариот, характерны все типы наследования: аутосомно-доминантный, аутосомно-рецессивный, наследование признаков, сцепленных с поло­выми хромосомами, и за счет взаимо­действия неаллельных генов. Разрабо­тал Г.Мендель и основной метод гене­тики - гибридологический. Он осно­ван на скрещивании особей одного ви­да, обладающих альтернативными при­знаками, и количественном анализе по­лученных фенотипических классов. Естественно, этот метод не может ис­пользоваться в генетике человека.

Первое описание аутосомно-доминантного наследования аномалий у человека дано в 1905 г. Фараби. Ро­дословная была составлена для се­мьи с короткопалостью (брахидактилией). У больных укорочены и час­тично редуцированы фаланги паль­цев рук и ног, кроме того, в результа­те укорочения конечностей, для них характерен низкий рост. Признак пере­дается от одного из родителей при­мерно половине детей, независимо от пола. Анализ родословных других се­мей свидетельствует, что брахидактилия отсутствует среди потомства ро­дителей, не являющихся носителями данного гена. Поскольку признак не может существовать в скрытом виде, следовательно, он является доминант­ным. А его проявления, независимо от пола, позволяют заключить, что он не сцеплен с полом. На основании изло­женного, можно сделать вывод, что брахидактилия определяется геном, находящимся в аутосомах, и является доминантной патологией.

Использование генеалогического метода позволило выявить доминант­ные, не сцепленные с полом признаки у человека. Это - темный цвет глаз, вьющиеся волосы, переносица с гор­бинкой, прямой нос (кончик носа смо­трит прямо), ямочка на подбородке, раннее облысение у мужчин, праворукость, способность свертывать язык в трубочку, белый локон надо лбом, «габ­сбургская губа» - нижняя челюсть уз­кая, выступающая вперед, нижняя гу­ба отвислая и полуоткрытый рот. По аутосомно-доминантному типу насле­дуются также некоторые патологичес­кие признаки человека: полидактилия или многопалость (когда на руке или ноге имеется от 6 до 9 пальцев), син­дактилия (сращение мягких или кост­ных тканей фаланг двух и более паль­цев), брахидактилия (недоразвитость дистальных фаланг пальцев, приводя­щая к короткопалости), арахнодактилия (сильно удлиненные "паучьи" пальцы, один из симптомов синдрома Марфана), некоторые формы близору­кости. Большинство носителей аутосомно-доминантной аномалии явля­ются гетерозиготами. Иногда случает­ся, что два носителя одной и той же до­минантной аномалии вступают в брак и имеют детей. Тогда четверть из них будут гомозиготами по мутантному доминантному аллелю (АА). Многие случаи из медицинской практики ука­зывают на то, что гомозиготы по доми­нантным аномалиям поражены тяже­лее, чем гетерозиготы. Например, в браке между двумя носителями брахидактилии родился ребенок, у которого не только не доставало пальцев на ру­ках и ногах, но и имелись множествен­ные уродства скелета. Он умер в возра­сте одного года. Другой ребенок в этой семье был гетерозиготным и имел обычные симптомы брахидактилии.

Аутосомно-рецессивные менделирующие признаки у человека опреде­ляются генами, локализованными в аутосомах, и могут проявиться у по­томства в браке двух гетерозигот, двух рецессивных гомозигот или гетерози­готы и рецессивной гомозиготы. Ис­следования показывают, что большин­ство браков, среди потомков которых наблюдаются рецессивные заболева­ния, происходит между фенотипически нормальными гетерозиготами (Аа х Аа). В потомстве такого брака геноти­пы АА, Аа и аа будут представлены в соотношении 1:2:1, и вероятность того, что ребенок окажется пораженным, со­ставит 25%. По аутосомно-рецессивному типу наследуются мягкие прямые волосы, курносый нос, светлые глаза, тонкая кожа и резус-отрицательная первая группы крови, многие болезни обмена веществ: фенилкетонурия, галактоземия, гистидинимия и др., а так­же пигментная ксеродерма.

Пигментная ксеродерма - одно из рецессивных заболеваний - относи­тельно недавно привлекла внимание молекулярных биологов. Эта патоло­гия обусловлена неспособностью кле­ток кожи больного репарировать по­вреждения ДНК, вызванные ультра­фиолетовым излучением. В результате развивается воспаление кожи, особен­но на лице, с последующей атрофией. Наконец, развивается рак кожи, при­водящий в отсутствие лечения к ле­тальному исходу. У больных редким рецессивным заболеванием степень кровного родст­ва между родителями обычно значи­тельно выше среднего уровня в попу­ляции. Как правило, родители насле­дуют этот ген от общего предка и явля­ются гетерозиготами. Подавляющее большинство больных аутосомно-рецессивными заболеваниями - это дети двух гетерозигот.

Помимо аутосомно-доминантного и аутосомно-рецессивного типов насле­дования у человека выявляются также неполное доминирование, кодоминированиеи сверхдоминирование.

Неполное доминирование связано с промежуточным проявлением призна­ка при гетерозиготном состоянии ал­лелей (Аа). Например, большой нос определяется двумя аллелями АА, ма­ленький нос - аллелями аа, нормаль­ный нос средних размеров - Аа. По типу неполного доминирования у че­ловека наследуются выпуклость губ и размеры рта и глаз, расстояние между глазами.

Кодоминирование - это такое взаи­модействие аллельных генов, при ко­тором в гетерозиготном состоянии оказываются и работают вместе два доминантных гена одновременно, то есть каждый аллель детерминирует свой признак. Наиболее удобно рас­смотреть кодоминирование на приме­ре наследования групп крови.

Группы крови системы АВ0 опреде­ляются тремя аллелями: А, В и 0. При­чем аллели А и В являются доминант­ными, а аллель 0 - рецессивным. Попарное сочетание этих трех аллелей в генотипе дает четыре группы крови. Аллельные гены, определяющие груп­пы крови, находятся в девятой паре хромосом человека и обозначаются со­ответственно: I A , I в и I°. Первая группа крови определяется наличием в генотипе двух рецессивных аллелей I° I°. Фенотипически это проявляется нали­чием в сыворотке крови антител альфа и бетта. Вторая группа крови может определяться двумя доминантными аллеля­ми I A I A , если человек гомозиготен, или аллелями I A I°, если он гетерозиготен. Фенотипически вторая группа крови проявляется наличием на поверхности эритроцитов антигенов группы А и присутствием в сыворотке крови анти­тел бетта. Третья группа определяется функционированием аллеля В. И в этом случае генотип может быть гете­розиготен (I в I°) или гомозиготен (I в I в). Фенотипически у людей с треть­ей группой крови на поверхности эри­троцитов выявляются антигены В, а фракции белков крови содержат анти­тела альфа. Люди с четвертой группой кро­ви сочетают в генотипе два доминант­ных аллеля АВ (I A I в), причем оба они функционируют: поверхность эритро­цитов несет оба антигена (А и В), а сы­воротка крови во избежание агглюти­нации соответствующих сывороточ­ных белков альфа и бетта не содержит. Таким образом, люди с четвертой группой крови являют примеры кодоминирования, поскольку у них одновременно работают два доминантных аллельных гена.

Явление сверхдоминирования свя­зано с тем, что в ряде случаев доми­нантные гены в гетерозиготном состо­янии проявляются сильнее, чем в го­мозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с та­кими сложными признаками, как жиз­неспособность, общая продолжитель­ность жизни и др.

Таким образом, у человека, как и у остальных эукариот, известны все ти­пы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаи­модействиями. Используя менделевские законы наследования, можно рас­считать вероятность рождения детей с теми или иным моделирующими при­знаками.

Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, осно­ванный на построении родословных.

Взаимодействие генов

До сих пор мы рассматривали толь­ко признаки, контролируемые моногенно. Однако на фенотипическое про­явление одного гена обычно влияют другие гены. Зачастую признаки фор­мируются при участии нескольких ге­нов, взаимодействие между которыми отражается в фенотипе.

Примером сложного взаимодейст­вия генов могут служить закономерно­сти наследования системы резус-фак­тор: резус плюс (Rh +) и резус минус (Rh-). В 1939 г. при исследовании сы­воротки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВ0 группе крови мужа, были обнаружены особые антитела, сходные с получаемыми при иммунизации эксперимен­тальных животных эритроцитами макаки-резус. Выявленные у больной ан­титела получили название резус-анти­тел, а ее группа крови - резус-отрица­тельной. Группа крови резус-положи­тельная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых струк­турными генами, несущими информа­цию о мембранных полипептидах. Ге­ны, определяющие резус-фактор, на­ходятся в первой паре хромосом чело­века. Резус-положительная группа крови является доминантной, резус-отрицательная - рецессивной. Резус-положительные люди могу быть гете­розиготными (Rh + /Rh-) или гомози­готными (Rh + /Rh +). Резус-отрица­тельные - только гомозиготными (Rh-/Rh-).

Позже выяснилось, что антигены и антитела резус фактора имеют слож­ную структуру и состоят из трех ком­понентов. Условно антигены резус-фактора обозначают буквами латин­ского алфавита С, D, Е. На основе ана­лиза генетических данных о наследова­нии резус-фактора в семьях и популя­циях была сформулирована гипотеза о том, что каждый компонент резус-фак­тора определяется своим геном, что эти гены сцеплены вместе в один локус и имеют общий оператор или промотор, который регулирует их количествен­ную экспрессию. Поскольку антигены обозначаются буквами С, D, Е, то таки­ми же строчными буквами обозначают гены, отвечающие за синтез соответст­вующего компонента.

Генетические исследования в семьях показывают возможность кроссинговера между тремя генами в локусе ре­зус-фактора у гетерозигот. Популяционные исследования выявили разно­образные фенотипы: CDE, CDe, cDE, cDe, CdE, Cde, cdE, cde. Взаимодейст­вия между генами, определяющими резус-фактор, сложные. По всей види­мости, главным фактором, определяю­щим резус-антиген, является антиген D. Он обладает гораздо большей иммуногенностью, чем антигены С и Е. Отрица­тельный резус-фактор выявляется у людей с генотипом d/d, положитель­ный - у людей с генотипом DD и D/d. У гетерозигот CDe/Cde и Cde/cDe с сочетанием генов Cde в резус-локусе экспрессия фактора D изменяется, в результате чего формируется фенотип D u со слабой реакцией в ответ на вве­дение резус-положительных антиге­нов. Следовательно, работа генов в ре­зус локусе может регулироваться количественно, и фенотипическое прояв­ление резус-фактора у резус-положи­тельных людей бывает различным: большим или меньшим.

Несовместимость по резус-фактору плода и матери способна стать причи­ной развития патологии у плода или самопроизвольного выкидыша на ран­них сроках беременности. С помощью специальных чувствительных методов удалось выявить, что во время родов около 1 мл крови плода может попа­дать в кровоток матери. Если мать - резус-отрицательная, а плод - резус-положительный, то после первых ро­дов мать будет сенсибилизирована к резус-положительным антигенам. При последующих беременностях резус-несовместимым плодом титр анти-Rh-антител в ее крови может резко возра­сти, и под влиянием их разрушающего действия у плода возникает характер­ная клиническая картина гемолитиче­ской патологии, выражающейся в ане­мии, желтухе или водянке.

В классической генетике наиболее изученными являются три типа взаи­модействия неаллельных генов: эпистаз, комплементарность и полимерия. Они определяют многие наследуемые признаки человека.

Эпистаз - это такой тип взаимодей­ствия неаллельных генов, при котором одна пара аллельных генов подавляет действие другой пары. Различают эпи­стаз доминантный и рецессивный. До­минантный эпистаз проявляется в том, что доминантный аллель в гомозигот­ном (АА) или гетерозиготном (Аа) со­стоянии подавляет проявление другой пары аллелей. При рецессивном эпистазе ингибирующий ген в рецессив­ном гомозиготном состоянии (аа) не дает возможность проявиться эпистатируемому гену. Подавляющий ген на­зывают супрессором или ингибитором, а подавляемый - гипостатическим. Этот тип взаимодействия наибо­лее характерен для генов, участвую­щих в регуляции онтогенеза и иммун­ных систем человека.

Примером рецессивного эпистаза у человека может служить «бомбейский феномен». В Индии была описана се­мья, в которой родители имели вторую (А0) и первую (00) группу крови, а их дети - четвертую (АВ) и первую (00). Чтобы ребенок в такой семье имел группу крови АВ, мать должна иметь группу крови В, но ни­как ни 0. Позже было выяснено, что в системе групп крови АВ0 имеются ре­цессивные гены-модификаторы, кото­рые в гомозиготном состоянии подав­ляют экспрессию антигенов на поверх­ности эритроцитов. Например, чело­век с третьей группой крови должен иметь на поверхности эритроцитов ан­тиген группы В, но эпистатирующий ген-супрессор в рецессивном гомози­готном состоянии (h/h) подавляет действие гена В, так что соответствую­щие антигены не образуются, и фенотипически проявляется группа крови 0. Описанный локус гена-супрессора не сцеплен с локусом АВ0. Гены-супрессоры наследуются независимо от генов, определяющих группы крови АВ0. Бомбейский феномен имеет час­тоту 1 на 13 000 среди индусов, говоря­щих на языке махарати и живущих в окрестностях Бомбея. Он распростра­нен также в изоляте на острове Реюнь­он. По-видимому, признак детермини­рован нарушением одного из фермен­тов, участвующих в синтезе антигена.

Комплементарность - это такой тип взаимодействия, при котором за признак отвечают несколько неаллельных генов, причем разное сочетание доминантных и рецессивных аллелей в их парах изменяет фенотипическое проявление признака. Но во всех слу­чаях, когда гены расположены в раз­ных парах хромосом, в основе расщеп­лений лежат цифровые законы, уста­новленные Менделем.

Так, чтобы человек имел нор­мальный слух, необходима согласо­ванная деятельность нескольких пар генов, каждый из которых может быть представлен доминантными или ре­цессивными аллелями. Нормальный слух развивается только в том случае, если каждый из этих генов имеет хотя бы один доминантный аллель в дипло­идном наборе хромосом. Если хотя бы одна пара аллелей представлена рецес­сивной гомозиготой, то человек будет глухим. Поясним сказанное простым примером. Предположим, что нор­мальный слух формирует пара генов. В этом случае людям с нормальным слухом присущи генотипы ААВВ, ААВb, АаВВ, АаВb. Наследственная глухота определяется генотипами: ааbb, Ааbb, ААbb, ааВb, ааВВ. Исполь­зуя законы Менделя для дигибридного скрещивания, легко рассчитать, что глухие родители (ааВВ х ААbb) могут иметь детей с нормальным слухом (АаВb), а нормально слышащие роди­тели при соответствующем сочетании генотипов АаВb х АаВb с высокой долей вероятности (более 40%) - глу­хих детей.

Полимерия - обусловленность оп­ределенного признака несколькими парами неаллельных генов, обладаю­щих одинаковым действием. Такие ге­ны называются полимерными. Если число доминантных аллелей влияет на степень выраженности признака, по­лимерия именуется кумулятивной. Чем больше доминантных аллелей, тем более интенсивно выражен при­знак. По типу кумулятивной полиме­рии обычно наследуются признаки, которые можно выразить количест­венно: цвет кожи, цвет волос, рост.

Цвет кожи и волос человека, а также цвет радужной оболочки глаз обеспе­чивает пигмент меланин. Формируя окраску покровов, он предохраняет ор­ганизм от воздействия ультрафиолето­вых лучей. Существует два типа мела­нинов: эумеланин (черный и темно-ко­ричневый) и феумеланин (желтый и рыжий). Меланин синтезируется в клетках из аминокислоты тирозина в несколько этапов. Регуляция синтеза осуществляется многими путями и за­висит, в частности, от скорости деле­ния клеток. При ускорении митозов клеток в основании волоса образуется феумеланин, а при замедлении - эу­меланин. Описаны некоторые формы злокачественного перерождения кле­ток кожного эпителия, сопровождаю­щиеся накоплением меланина (меланомы).

Все цвета волос, за исключением рыжих, составляют непрерывный ряд от темного до светлого (соответствен­но уменьшению концентрации мела­нина) и наследуются полигенно по ти­пу кумулятивной полимерии. Счита­ется, что эти различия обусловлены чисто количественными изменениями в содержании эумеланина. Цвет рыжих волос зависит от наличия феумеланина. Окраска волос обычно меняется с возрастом и стабилизируется с наступлением половой зрелости.

Цвет радужной оболочки глаз определяют несколько факторов. С одной стороны, он зависит от присутствия гранул меланина, а с другой - от характера отражения света. Черный и коричневый цвета обусловлены много­численными пигментными клетками в переднем слое радужной оболочки. В светлых глазах содержание пигмента значительно меньше. Преобладание голубого цвета в свете, отраженном от переднего слоя радужной оболочки, не содержащей пигмента, объясняется оп­тическим эффектом. Различное содер­жание пигмента, определяет весь диа­пазон цвета глаз.

По типу кумулятивной полимерии наследуется также пигментация кожи человека. На основе генетических ис­следований семей, члены которых имеют разную интенсивность кожной пигментации, предполагается, что цвет кожи человека определяют три или четыре пары генов.

Признание принципа взаимодейст­вия генов наводит на мысль о том, что все гены так или иначе взаимосвязаны в своем действии. Если один ген ока­зывает влияние на работу других ге­нов, то он может влиять на проявление не только одного, но и нескольких при­знаков. Такое множественное действие гена называют плейотропией . Наибо­лее ярким примером плейотропного действия гена у человека является синдром Марфана, уже упоминавшая­ся аутосомно-доминантная патология. Арахнодактилия ("паучьи" пальцы) - один из симптомов синдрома Марфа­на. Другими симптомами являются высокий рост из-за сильного удлине­ния конечностей, гиперподвижность суставов, ведущий к близорукости, подвывих хрусталика и аневризм аор­ты. Синдром с одинаковой частотой встречается у мужчин и женщин. В ос­нове указанных симптомов лежит де­фект развития соединительной ткани, возникающий на ранних этапах онто­генеза и приводящий к множествен­ным фенотипическим проявлениям.

Плейотропным действием обладают многие наледственные патологии. Оп­ределенные этапы метаболизма обес­печивают гены. Продукты метаболиче­ских реакций, в свою очередь регули­руют, а возможно, и контролируют другие метаболические реакции. По­этому нарушения метаболизма на од­ном этапе отразятся на последующих этапах, так что нарушение экспрессии одного гена окажет влияние на не­сколько элементарных признаков.

Наследственность и среда

Фенотипическое проявление при­знака определяется генами, отвечаю­щими за этот признак, взаимодействи­ем детерминирующих с другими гена­ми и условиями внешней среды. Сле­довательно, степень фенотипической выраженности детерминированного признака (экспрессивность ) может изменяться: усиливаться или ослаб­ляться. Для многих доминантных признаков характерно, что ген прояв­ляется у всех гетерозигот, но в разной степени. Многие доминантные заболе­вания обнаруживают значительную индивидуальную изменчивость и по возрасту начала, и по тяжести прояв­ления, и внутри одной семьи, и в раз­ных семьях.

В ряде случаев признак может вооб­ще не выражаться фенотипически, не­смотря на генотипическую предопре­деленность. Частота фенотипического проявления данного гена среди его но­сителей называется пенетрантностью и выражается в процентах. Пенетрантность бывает полной, если признак проявляется у всех носителей данного гена (100%), и неполной, если признак проявляется только у части носите­лей. В случае неполной пенетрантности иногда при передаче признака одно поколение пропускается, хотя лишен­ный его индивид, судя по родослов­ной, должен быть гетерозиготным. Пе-нетрантность - это статистическое понятие. Оценка ее величины часто зависит от применяемых методов об­следования.

Генетика пола

Из 46 хромосом (23 пары) в кариотипе человека 22 пары одинаковы у муж­чин и женщин (аутосомы), а одна пара, называемая половой, у разных полов отличается: у женщин - XX, у муж­чин - XY. Половые хро­мосомы представлены в каждой сома­тической клетке индивида. При образо­вании гамет во время мейоза гомоло­гичные половые хромосомы расходятся в разные половые клетки. Следователь­но, каждая яйцеклетка помимо 22 аутосом несет одну половую хромосому X. Все сперматозоиды также имеют гаплоидный набор хромосом, из кото­рых 22 - аутосомы, а одна - половая. Половина сперматозоидов содержит X, другая половина - Y хромосому.

Поскольку женские половые хромо­сомы одинаковы и все яйцеклетки несут Х-хромосому, то женский пол у че­ловека называют гомогаметным. Муж­ской же пол из-за различия половых хромосом (X или Y) в сперматозоидах именуют гетерогаметным.

Пол человека определяется в мо­мент оплодотворения. Женщина имеет один тип гамет - X, мужчина - два ти­па гамет: X и Y, причем, согласно зако­нам мейоза, образуются они в равной пропорции. При оплодотворении хро­мосомные наборы гамет объединяют­ся. Напомним, что зигота содержит 22 пары аутосом и одну пару половых хромосом. Если яйцеклетку оплодо­творил сперматозоид с Х-хромосомой, то в зиготе пара половых хромосом бу­дет XX, из нее разовьется девочка. Ес­ли же оплодотворение произвел спер­матозоид с Y-хромосомой, то набор по­ловых хромосом в зиготе - XY. Такая зигота даст начало мужскому организ­му. Таким образом, пол будущего ре­бенка определяет гетерогаметный по половым хромосомам мужчина. Соот­ношение полов при рождении, по дан­ным статистики, соответствует при­мерно 1:1.

Хромосомное определение пола - не единственный уровень половой дифференцировки. Большую роль в этом процессе у человека играет гор­мональная регуляция, происходящая с помощью половых гормонов, которые синтезируются половыми железами.

Закладка половых органов человека начинается у пятинедельного эмбрио­на. В зачатки гонад из желточного мешка мигрируют первичные клетки зародышевого пути, которые, размно­жаясь митозом, дифференцируются в гонии и становятся предшественника­ми гамет. У зародышей обоих полов миграция проходит одинаково. Если же в клетках зачатков гонад присутст­вует Y-хромосома, то начинают развиваться семенники, причем начало диф­ференцировки связано с функциони­рованием эухроматинового района Y-хромосомы. Если же Y-хромосома от­сутствует, то развиваются яичники, что соответствует женскому типу.

Человек по своей природе бисексуа­лен. Зачатки половой системы одина­ковы у зародышей обоих полов. Если активность Y - хромосомы подавлена, то зачатки половых органов развива­ются по женскому типу. При полном отсутствии всех элементов становле­ния мужского пола формируются жен­ские половые органы.

Тип вторичных половых признаков обусловлен дифференцировкой гонад. Половые органы формируются из мюллеровых и вольфовых каналов. У женщин мюллеровы протоки развива­ются в фаллопиевы трубы и матку, а вольфовы атрофируются. У мужчин вольфовы каналы развиваются в се­менные протоки и семенные пузырьки. Под влиянием хорионического гонадотропина матери лежащие в эмбрио­нальных семенниках клетки Лейдига синтезируют стероидные гормоны (те­стостерон), которые участвуют в регу­ляции развития особи по мужскому типу. Одновременно в семенниках в клетках Сертоли синтезируется гор­мон, ингибирующий дифференциров­ку мюллеровых протоков. Нормаль­ные особи мужского пола развиваются только в случае, если все гормоны, действующие на зачатки внешних и внутренних половых органов, «сраба­тывают» в определенное время в задан­ном месте.

В настоящее время описано около 20 разнообразных дефектов генов, ко­торые при нормальном (XY) кариотипе по половым хромосомам приводят к нарушению дифференцировки внеш­них и внутренних половых признаков, (гермафродитизму). Эти мутации свя­заны с нарушением: а) синтеза поло­вых гормонов; б) восприимчивости ре­цепторов к ним; в) работы ферментов, участвующих в синтезе регулирующих факторов и т.д.

Наследование признаков, сцепленных с полом

Х- и Y-хромосомы гомологичны, по­скольку обладают общими гомологич­ными участками, где локализованы аллельные гены. Однако, несмотря на го­мологию отдельных локусов, эти хро­мосомы различаются по морфологии. Ведь, помимо общих участков, они несут большой набор раз­личающихся генов. В Х-хромосоме ле­жат гены, которых нет в Y-хромосоме, а ряд генов Y-хромосомы отсутствуют в Х-хромосоме. Таким образом, у мужчин в половых хромосомах некоторые гены не имеют второго аллеля в гомологич­ной хромосоме. В таком случае признак определяется не парой аллельных ге­нов, как обычный менделирующий признак, а только одним аллелем. По­добное состояние гена называется гемизиготным, а признаки, раз­витие которых обусловлено одиноч­ным аллелем, расположенным в одной из альтернативных половых хромосом, получили название сцепленных с по­лом. Она преимущественно развивают­ся у одного из двух полов и по-разному наследуются у мужчин и женщин.

Признаки, сцепленные с Х-хромосомой, могут быть рецессивными и до­минантными. К рецессивным относят­ся: гемофилия, дальтонизм (неспособ­ность различать красный и зеленый цвета), атрофия зрительного нерва и миопатия Дюшена. К доминантным - рахит, не поддающийся лечению вита­мином Д, и темная эмаль зубов.

Рассмотрим наследование, сцеплен­ное с Х-хромосомой, на примере ре­цессивного гена гемофилии. У мужчи­ны ген гемофилии, локализованный в Х-хромосоме, не имеет аллеля в Y-xpoмосоме, то есть находится в гемизиготном состоянии. Следовательно, несмо­тря на то, что признак рецессивный, у мужчин он проявляется:

N - ген нормальной свертываемос­ти крови,

h - ген гемофилии;

X h Y - мужчина с гемофилией;

X N Y - мужчина здоров.

У женщин признак определяется парой аллельных генов в половых хро­мосомах XX, следовательно, гемофи­лия может проявиться только в гомо­зиготном состоянии:

X N X N - женщина здорова.

X N X h - гетерозиготная женщина, но­сительница гена гемофилии, здорова,

X h X h - женщина с гемофилией.

Законы передачи признаков, сцеп­ленных с Х-хромосомами, были впер­вые изучены Т. Морганом.

Помимо Х-сцепленных, у мужчин имеются Y-сцепленные признаки. Они называются голандрическими. Опре­деляющие их гены локализованы в тех районах Y-хромосом, которые не име­ют аналогов в Х-хромосомах. Голандрические признаки также опре­деляются только одним аллелем, а по­скольку их гены находятся только в Y-хромосоме, то выявляются они у муж­чин и передаются от отца к сыну, вер­нее - ко всем сыновьям. К голандрическим признакам относятся: волоса­тость ушей, перепонки между пальца­ми ног, ихтиоз (кожа имеет глубокую исчерченность и напоминает рыбью чешую).

Гомологичные районы Х- и Y-хро­мосом содержат аллельные гены, с рав­ной вероятностью встречающиеся у лиц мужского и женского пола.

К числу определяемых ими призна­кам относятся общая цветовая слепота (отсутствие цветового зрения) и пиг­ментная ксеродерма. Оба эти признака являются рецес­сивными. Признаки, связанные с аллельными генами, находящимися в X- и Y-хромосомах, наследуются по клас­сическим менделевским законам.

Наследование, ограниченное и контролируемое полом

Признаки человека, наследование которых каким-то образом связано с полом, подразделяются на несколько категорий.

Одна из категорий - признаки, ог­ раниченные полом . Их развитие обус­ловлено генами, расположенными в аутосомах обоих полов, но проявляющимися только у одного пола. Напри­мер, гены, определяющие ширину таза женщины, локализованы в аутосомах, наследуются и от отца и от матери, но проявляются только у женщин. То же касается возраста полового созревания девочек. Среди мужских признаков, ограниченных полом, можно назвать количество и распределение волосяно­го покрова на теле.

К иной категории относятся призна­ ки, контролируемые полом , или зави­симые от пола. Развитие соматических признаков обусловлено генами, распо­ложенными в аутосомах, проявляются они у мужчин и женщин, но по-разно­му. Например, у мужчин раннее облы­сение - признак доминантный, он проявляется как у доминантных гомо­зигот (Аа) так и у гетерозигот (Аа). У женщин этот признак рецессивный, он проявляется только у рецессивных го­мозигот (аа). Поэтому лысых мужчин гораздо больше, чем женщин. Другим примером может служить подагра, у мужчин ее пенетрантность выше: 80% против 12% у женщин. Значит, чаще подагрой болеют мужчины. Экспрес­сивность признаков, контролируемых полом, обусловлена половыми гормо­нами. Например, тип певческого голо­са (бас, баритон, тенор, сопрано, мец­цо-сопрано и альт) контролируется по­ловой конституцией. Начиная с перио­да полового созревания, признак нахо­дится под влиянием половых гормо­нов.

Сцепление генов и карты хромосом

Хромосомная теория наследствен­ности была сформулирована и экспе­риментально доказана Т. Морганом и его сотрудниками. Согласно этой тео­рии, гены находятся в хромосомах и расположены в них линейно. Гены, ло­кализованные в одной хромосоме, называются сцепленными, наследуются вместе и образуют группу сцепления. Количество групп сцепления соответ­ствует числу пар гомологичных хромо­сом. У человека 46 хромосом: 22 пары аутосом и одна пара половых хромо­сом (XX или XY), следовательно, у женщин 23 группы сцепления, а у мужчин - 24, так как половые хромо­сомы мужчины (XY) не полностью го­мологичны друг другу. Каждая из по­ловых хромосом мужчины имеет гены, характерные только для Х- и только для Y-хромосомы, которым соответст­вуют группы сцепления Х- и Y-хромо­сомы.

Гены, локализованные в одной хро­мосоме и образующие группу сцепле­ния, сцеплены не абсолютно. В зиготене профазы первого мейотического де­ления гомологичные хромосомы сли­ваются вместе с образованием бива­лентов, затем в пахитене происходит кроссинговер-обмен участками между хроматидами гомологичных хромосом. Кроссинговер - обязательный про­цесс. Он осуществляется в каждой па­ре гомологичных хромосом. Чем даль­ше друг от друга расположены гены в хромосоме, тем чаще между ними про­исходит кроссинговер. Благодаря это­му процессу, возрастает разнообразие сочетания генов в гаметах. Например, пара гомологичных хромосом содер­жит сцепленные гены АВ и ab. В про­фазе мейоза гомологичные хромосомы конъюгируют и образуют бивалент: АВ ab

Если кроссинговер между генами А и В не произойдет, то в результате мей­оза образуется два типа некроссоверных гамет: АВ и ab. Если же кроссин­говер состоится, то получатся кроссоверные гаметы: Ab иаВ, то есть группы сцепления изменятся. Чем более удалены друг от друга гены А и В, тем больше возрастает вероятность обра­зования и, соответственно число кроссоверных гамет.

Если гены в большой хромосоме расположены на достаточном расстоя­нии друг от друга и между ними в мейозе происходят многочисленные пере­кресты, то они могут наследоваться не­зависимо.

Открытие кроссинговера позволило Т. Моргану и сотрудникам его школы в первые два десятилетия XX века раз­работать принцип построения генети­ческих карт хромосом. Явление сцеп­ления было использовано ими для вы­яснения локализации генов, располо­женных в одной хромосоме, и созда­ния генных карт плодовой мушки Drosophila melanogaster. На генетичес­ких картах гены располагаются линей­но друг за другом на определенном расстоянии. Расстояние между генами определяется в процентах кроссинго­вера, или в морганидах (1 % кроссин­говера равен одной морганиде).

Для построения генетических карт у растений и животных проводят анали­зирующие скрещивания, в которых до­статочно просто рассчитать процент особей, образовавшихся в результате кроссинговера, и построить генетичес­кую карту по трем сцепленным генам. У человека анализ сцепления генов классическими методами невозможен, поскольку невозможны эксперимен­тальные браки. Поэтому для изучения групп сцепления и составления карт хромосом человека используют другие методы, в первую очередь генеалогиче­ский, основанный на анализе родо­словных.

Т Е М А № 7 Наследственные заболевания человека

Проблема здоровья людей и генети­ка тесно взаимосвязаны. Ученые-гене­тики пытаются ответить на вопрос, по­чему одни люди подвержены различ­ным заболеваниям, в то время как дру­гие в этих или даже худших условиях остаются здоровы. В основном это свя­зано с наследственностью каждого че­ловека, т.е. свойствами его генов, за­ключенных в хромосомах.

В последние годы отмечаются быст­рые темпы развития генетики челове­ка и медицинской генетики. Это объ­ясняется многими причинами и, преж­де всего резким увеличением доли на­следственной патологии в структуре заболеваемости и смертности населе­ния. Статистика показывает, что из 1000 новорожденных у 35-40 выявля­ются различные типы наследственных болезней, а в смертности детей в возра­сте до 5 лет хромосомные болезни со­ставляют 2-3%, генные - 8-10%, мультифакториальные - 35-40%. Ежегодно в нашей стране рождается 180 тыс. де­тей с наследственными заболевания­ми. Более половины из них имеют врожденные пороки, около 35тыс. - хромосомные болезни и свыше 35 тыс. - генные болезни. Следует отме­тить, что число наследственных болез­ней у человека с каждым годом растет, отмечаются новые формы наследст­венной патологии. В 1956 г. было изве­стно 700 форм наследственных заболе­ваний, а к 1986 году число их увеличи­лось до 2000. В 1992 количество изве­стных наследственных болезней и признаков возросло до 5710.

Все наследственные болезни делят­ся на три группы:

    Генные (моногенные - в основе патологии одна пара аллельных генов)

    Хромосомные

    Болезни с наследственным пред­расположением (мультифакториальные).

Генные болезни человека

Генные болезни - это большая груп­па заболеваний, возникающих в резуль­тате повреждения ДНК на уровне гена.

Общая частота генных болезней в популяции составляет 1-2%. Условно частоту генных болезней считают вы­сокой, если она встречается с частотой 1 случай на 10.000 новорожденных, средней - 1 на 10.000-40.000 и далее - низкой.

Моногенные формы генных заболе­ваний наследуются в соответствии с законами Г. Менделя. По типу насле­дования они делятся на аутосомно-доминантные, аутосомно-рецессивные и сцепленные с Х- или Y-хромосомами.

Большинство генных патологий обусловлено мутациями в структурных генах, осуществляющих свою функцию через синтез полипептидов - белков. Любая мутация гена ведет к изменению структуры или количества белка.

Начало любой генной болезни свя­зано с первичным эффектом мутантного аллеля. Основная схема генных болезней включает ряд звеньев:

    мутантный аллель;

    измененный пер­вичный продукт;

    цепь последующих биохимических процессов клетки;

  1. организм.

В результате мутации гена на моле­кулярном уровне возможны следую­щие варианты:

    синтез аномального белка;

    выработка избыточного количе­ства генного продукта;

    отсутствие выработки первично­го продукта;

    выработка уменьшенного коли­чества нормального первичного про­дукта.

Не заканчиваясь на молекулярном уровне в первичных звеньях, патогенез генных болезней продолжается на кле­точном уровне. При различных болез­нях точкой приложения действия мутантного гена могут быть как отдель­ные структуры клетки - лизосомы, мембраны, митохондрии, так и органы человека. Клиничес­кие проявления генных болезней, тя­жесть и скорость их развития зависят от особенностей генотипа организма (гены-модификаторы, доза генов, вре­мя действия мутантного гена, гомо- и гетерозиготность и др.), возраста боль­ного, условий внешней среды (пита­ние, охлаждение, стрессы, переутомле­ние) и других факторов.

Особенностью генных (как и вооб­ще всех наследственных) болезней яв­ляется их гетерогенность. Это означа­ет, что одно и то же фенотипическое проявление болезни может быть обус­ловлено мутациями в разных генах или разными мутациями внутри одно­го гена.

К генным болезням у человека отно­сятся многочисленные болезни обмена веществ. Они могут быть связаны с на­рушением обмена углеводов, липидов, стероидов, пуринов и пиримидинов, билирубина, металлов и др. Пока еще нет единой классификации наследст­венных болезней обмена веществ. На­учной группой ВОЗ предложена сле­дующая классификация:

1) болезни аминокислотного обмена (фенилкетонурия, алкаптонурия и др.);

    наследственные нарушения обме­на углеводов (галаюгоземия, гликогеновая

болезнь и др.);

    болезни, связанные с нарушением липидного обмена (болезнь Ниманна-

Пика, болезнь Гоше и др.);

    наследственные нарушения обме­на стероидов;

    наследственные болезни пуринового и пиримидинового обмена (пода­гра,

синдром Леша-Найяна и др.);

6) болезни нарушения обмена со­единительной ткани (болезнь Марфана,

мукополисахаридозы и др.);

7) наследственные нарушения гема- и порфирина (гемоглобинопатии и др.);

    болезни, связанные с нарушением обмена в эритроцитах (гемолитичес­кие

анемии и др.);

    наследственные нарушения обме­на билирубина;

    наследственные болезни обмена металлов (болезнь Коновалова-Виль­сона

    наследственные синдромы нару­шения всасывания в пищеваритель­ном

тракте (муковисцидоз, неперено­симость лактозы и др.).

Рассмотрим наиболее часто встреча­ющиеся и генетически наиболее изу­ченные в настоящее время генные бо­лезни.

Человечество сталкивается с огромным количеством вопросов, многие из которых до сих пор остаются без ответа. И самые близкие человеку – связанные с его физиологией. Стойкое изменение наследственных свойств организма под влиянием внешней и внутренней среды – мутация. Так же данный фактор – важная часть естественного отбора, ведь это источник естественной изменчивости.

Достаточно часто к мутированию организмов прибегают селекционеры. Наука разделяет мутации на несколько видов: геномная, хромосомная и генная.

Генная — наиболее распространенная, и именно с ней приходится сталкиваться чаще всего. Она заключается в изменении первичной структуры , а следовательно и аминокислот, считываемых с иРНК. Последние выстраиваются комплементарно одной из цепей ДНК (биосинтез белка: транскрипция и трансляция).

Название мутации изначально имели любые скачкообразные изменения. Но современные представления об этом явлении сложились только к XX веку. Сам термин «мутация” был введен в 1901 году Хьюго Де Фрисом, голландским ботаником и генетиком, ученым, знания и наблюдения которого приоткрыли законы Менделя. Именно он сформулировал современное понятие мутации, а так же разработал мутационную теорию, но примерно в тот же период она была сформулирована нашим соотечественником – Сергеем Коржинским в 1899 году.

Проблема мутаций в современной генетике

Но современными учеными были сделаны уточнения относительно каждого пункта теории.
Как оказалось, имеют место особые изменения, которые накапливаются во время жизни поколений. Также стало известно, что существуют ликовые мутации, заключающиеся в незначительном искажении исходного продукта. Положение о повторном возникновении новых биологических признаков касается исключительно генных мутаций.

Важно понимать, что определение того, насколько она вредна или полезна, во многом зависит от генотипической среды. Многие факторы внешней среды способны нарушать упорядоченность генов, строго установленного процесса их самовоспроизведения.

В процессе и естественного отбора человек приобрел не только полезные особенности, но и не самые благоприятные, относящиеся к болезням. И человеческий вид расплачивается за полученное от природы за счет накопления патологических признаков.

Причины генных мутаций

Мутагенные факторы. Большинство мутаций губительно влияют на организм, нарушая отрегулированные естественным отбором признаки. Каждый организм предрасположен к мутации, но под воздействием мутагенных факторов их число резко увеличивается. К таким факторам относят: ионизирующее, ультрафиолетовое излучение, повышенную температуру, многие соединения химических веществ, а так же вирусы.

Антимутагенными факторами, то есть факторами защиты наследственного аппарата, смело можно отнести вырожденность генетического кода, удаление ненужных участков, не несущих генетическую информацию (интронов), а также двойная цепь ДНК молекулы.

Классификация мутаций

1. Дупликация . При этом происходит копирование от одного нуклеотида в цепи до фрагмента цепи ДНК и самих генов.
2. Делеция . В таком случае происходит утрата части генетического материала.
3. Инверсия . При таком изменении определенный участок поворачивается на 180 градусов.
4. Инсерция . Наблюдается вставка от одного нуклеотида до частей ДНК и гена.

В современном мире мы все чаще сталкиваемся с проявлением изменения различных признаков как у животного, так и у человека. Зачастую мутации будоражат видавших виды ученых.

Примеры генных мутаций у людей

1. Прогерия . Прогерией принято считать одним из самых редких генетических дефектов. Проявляется данная мутация в преждевременном старении организма. Большая часть больных погибает, не достигнув тринадцатилетнего возраста, и немногим удается сохранить жизнь до двадцати лет. Данная болезнь развивает инсульты и болезни сердца, и именно поэтому, чаще всего, причиной смерти является сердечный приступ или инсульт.
2. Синдром на Юнера Тана (СЮТ) . Данный синдром специфичен тем, что подверженные ему передвигаются на четвереньках. Обычно люди СЮТ используют самую простую, примитивную речь и страдают врожденной мозговой недостаточностью.
3. Гипертрихоз . Так же имеет название “синдром оборотня” или же — ”синдром Абрамса”. Данное явление прослеживается и документируется со времен Средневековья. Люди, подверженные гипертрихозу отличаются количеством , превышающим нормы, особенно это распространяется на лицо, уши и плечи.
4. Тяжелый комбинированный иммунодефицит . Подверженные данному заболеванию уже при рождении лишены эффективной иммунной системы, которой обладает среднестатистический человек. Дэвид Веттер, благодаря которому в 1976 году данная болезнь получила известность, скончался в возрасте тринадцати лет, после неудачной попытки хирургического вмешательства с целью укрепления иммунитета.
5. Синдром Марфана . Заболевание встречается довольно часто, и сопровождается непропорциональному развитию конечностей, чрезмерной подвижностью суставов. Гораздо реже встречается отклонение выраженное срастанием ребер, следствием чего является или выпирание, или западание грудной клетки. Частой проблемой подверженных донному синдрому является искривление позвоночника.

Мутации - это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора.


Генные мутации - изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины - нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.


Хромосомные мутации - изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины - нарушения при кроссинговере. Пример: синдром кошачьего крика.


Геномные мутации - изменение количества хромосом. Причины - нарушения при расхождении хромосом.

  • Полиплоидия - кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.
  • Анеуплоидия - изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом - 47).

Цитоплазматические мутации - изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений - пестролистность.


Соматические - мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Приведённые ниже понятия, кроме двух, используются для описания последствий нарушения расположения нуклеотидов в участке ДНК, контролирующем синтез белка. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение первичной структуры полипептида
2) расхождение хромосом
3) изменение функций белка
4) генная мутация
5) кроссинговер

Ответ


Выберите один, наиболее правильный вариант. Полиплоидные организмы возникают в результате
1) геномных мутаций

3) генных мутаций
4) комбинативной изменчивости

Ответ


Установите соответствие между характеристикой изменчивости и ее видом: 1) цитоплазматическая, 2) комбинативная
А) происходит при независимом расхождении хромосом в мейозе
Б) происходит в результате мутаций в ДНК митохондрий
В) возникает в результате перекреста хромосом
Г) проявляется в результате мутаций в ДНК пластид
Д) возникает при случайной встрече гамет

Ответ


Выберите один, наиболее правильный вариант. Синдром Дауна является результатом мутации
1) геномной
2) цитоплазматической
3) хромосомной
4) рецессивной

Ответ


1. Установите соответствие между характеристикой мутации и ее видом: 1) генная, 2) хромосомная, 3) геномная
А) изменение последовательности нуклеотидов в молекуле ДНК
Б) изменение строения хромосом
В) изменение числа хромосом в ядре
Г) полиплоидия
Д) изменение последовательности расположения генов

Ответ


2. Установите соответствие между характеристиками и типами мутаций: 1) генные, 2) геномные, 3) хромосомные. Запишите цифры 1-3 в порядке, соответствующем буквам.
А) делеция участка хромосомы
Б) изменение последовательности нуклеотидов в молекуле ДНК
В) кратное увеличение гаплоидного набора хромосом
Г) анеуплоидия
Д) изменение последовательности генов в хромосоме
Е) выпадение одного нуклеотида

Ответ


Выберите три варианта. Чем характеризуется геномная мутация?
1) изменением нуклеотидной последовательности ДНК
2) утратой одной хромосомы в диплоидном наборе
3) кратным увеличением числа хромосом
4) изменением структуры синтезируемых белков
5) удвоением участка хромосомы
6) изменением числа хромосом в кариотипе

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик геномной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) ограничена нормой реакции признака
2) число хромосом увеличено и кратно гаплоидному
3) появляется добавочная Х-хромосома
4) имеет групповой характер
5) наблюдается потеря Y-хромосомы

Ответ


2. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) нарушение расхождения гомологичных хромосом при делении клетки
2) разрушение веретена деления
3) конъюгация гомологичных хромосом
4) изменение числа хромосом
5) увеличение числа нуклеотидов в генах

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания геномных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) изменение последовательности нуклеотидов в молекуле ДНК
2) кратное увеличение хромосомного набора
3) уменьшение числа хромосом
4) удвоение участка хромосомы
5) нерасхождение гомологичных хромосом

Ответ


4. Ниже приведен перечень характеристик изменчивости. Все они, кроме трех, используются для описания характеристик геномных мутаций. Найдите три характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) возникают в результате перераспределения генного материала между хромосомами
2) связаны с нерасхождением хромосом при мейозе
3) возникают из-за утраты части хромосомы
4) приводят к появлению полисомии и моносомии
5) связаны с обменом участками между негомологичными хромосомами
6) обычно оказывают вредное воздействие и приводят к гибели организма

Ответ


Выберите один, наиболее правильный вариант. Рецессивные генные мутации изменяют
1) последовательность этапов индивидуального развития
2) состав триплетов в участке ДНК
3) набор хромосом в соматических клетках
4) строение аутосом

Ответ


Выберите один, наиболее правильный вариант. Цитоплазматическая изменчивость связана с тем, что
1) нарушается мейотическое деление
2) ДНК митохондрий способна мутировать
3) появляются новые аллели в аутосомах
4) образуются гаметы, неспособные к оплодотворению

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) потеря участка хромосомы
2) поворот участка хромосомы на 180 градусов
3) уменьшение числа хромосом в кариотипе
4) появление добавочной Х-хромосомы
5) перенос участка хромосомы на негомологичную хромосому

Ответ


2. Все приведённые ниже признаки, кроме двух, используются для описания хромосомной мутации. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) число хромосом увеличилось на 1-2
2) один нуклеотид в ДНК заменяется на другой
3) участок одной хромосомы перенесен на другую
4) произошло выпадение участка хромосомы
5) участок хромосомы перевернут на 180°

Ответ


3. Все приведенные ниже характеристики, кроме двух, используются для описания хромосомной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) умножение участка хромосомы в несколько раз
2) появление дополнительной аутосомы
3) изменение последовательности нуклеотидов
4) потеря концевого участка хромосомы
5) поворот гена в хромосоме на 180 градусов

Ответ


ФОРМИРУЕМ
1) удвоение одного и того же участка хромосомы
2) уменьшение числа хромосом в половых клетках
3) увеличение числа хромосом в соматических клетках

Выберите один, наиболее правильный вариант. К какому виду мутаций относят изменение структуры ДНК в митохондриях
1) геномной
2) хромосомной
3) цитоплазматической
4) комбинативной

Ответ


Выберите один, наиболее правильный вариант. Пестролистность у ночной красавицы и львиного зева определяется изменчивостью
1) комбинативной
2) хромосомной
3) цитоплазматической
4) генетической

Ответ


1. Ниже приведен перечень характеристик изменчивости. Все они, кроме двух, используются для описания характеристик генной изменчивости. Найдите две характеристики, «выпадающие» из общего ряда, и запишите цифры, под которыми они указаны.
1) обусловлена сочетанием гамет при оплодотворении
2) обусловлена изменением последовательности нуклеотидов в триплете
3) формируется при рекомбинации генов при кроссинговере
4) характеризуется изменениями внутри гена
5) формируется при изменении нуклеотидной последовательности

Ответ


2. Все приведенные ниже характеристики, кроме двух, служат причинами генной мутации. Определите эти два понятия, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) конъюгация гомологичных хромосом и обмен генами между ними
2) замена одного нуклеотида в ДНК на другой
3) изменение последовательности соединения нуклеотидов
4) появление в генотипе лишней хромосомы
5) выпадение одного триплета в участке ДНК, кодирующей первичную структуру белка

Ответ


3. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) замена пары нуклеотидов
2) возникновение стоп-кодона внутри гена
3) удвоение числа отдельных нуклеотидов в ДНК
4) увеличение числа хромосом
5) потеря участка хромосомы

Ответ


4. Все приведённые ниже характеристики, кроме двух, используют для описания генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) добавление одного триплета в ДНК
2) увеличение числа аутосом
3) изменение последовательности нуклеотидов в ДНК
4) потеря отдельных нуклеотидов в ДНК
5) кратное увеличение числа хромосом

Ответ


5. Все приведённые ниже характеристики, кроме двух, типичны для генных мутаций. Определите две характеристики, «выпадающие» из общего списка, и запишите цифры, под которыми они указаны.
1) возникновение полиплоидных форм
2) случайное удвоение нуклеотидов в гене
3) потеря одного триплета в процессе репликации
4) образование новых аллелей одного гена
5) нарушение расхождения гомологичных хромосом в мейозе

Ответ


ФОРМИРУЕМ 6:
1) осуществляется перенос участка одной хромосомы на другую
2) возникает в процессе репликации ДНК
3) происходит выпадение участка хромосомы

Выберите один, наиболее правильный вариант. Полиплоидные сорта пшеницы - это результат изменчивости
1) хромосомной
2) модификационной
3) генной
4) геномной

Ответ


Выберите один, наиболее правильный вариант. Получение селекционерами сортов полиплоидной пшеницы возможно благодаря мутации
1) цитоплазматической
2) генной
3) хромосомной
4) геномной

Ответ


Установите соответствие между характеристиками и мутациями: 1) геномная, 2) хромосомная. Запишите цифры 1 и 2 в правильном порядке.
А) кратное увеличение числа хромосом
Б) поворот участка хромосомы на 180 градусов
В) обмен участками негомологичных хромосом
Г) выпадение центрального участка хромосомы
Д) удвоение участка хромосомы
Е) некратное изменение числа хромосом

Ответ


Выберите один, наиболее правильный вариант. Появление разных аллелей одного гена происходит в результате
1) непрямого деления клетки
2) модификационной изменчивости
3) мутационного процесса
4) комбинативной изменчивости

Ответ


Все перечисленные ниже термины, кроме двух, используются при классификации мутаций по изменению генетического материала. Определите два термина, «выпадающих» из общего списка, и запишите цифры, под которыми они указаны.
1) геномные
2) генеративные
3) хромосомные
4) спонтанные
5) генные

Ответ


Установите соответствие между типами мутаций и их характеристиками и примерами: 1) геномные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) утеря или появление лишних хромосом в результате нарушения мейоза
Б) приводят к нарушению функционирования гена
В) примером является полиплоидия у простейших и растений
Г) удвоение или потеря участка хромосомы
Д) ярким примером является синдром Дауна

Ответ


Установите соответствие между категориями наследственных болезней и их примерами: 1) генные, 2) хромосомные. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) гемофилия
Б) альбинизм
В) дальтонизм
Г) синдром «кошачьего крика»
Д) фенилкетонурия

Ответ


Найдите три ошибки в приведённом тексте и укажите номера предложений с ошибками. (1) Мутации – это случайно возникшие стойкие изменения генотипа. (2) Генные мутации – это результат «ошибок», возникающих в процессе удвоения молекул ДНК. (3) Геномными называют мутации, которые ведут к изменению структуры хромосом. (4) Многие культурные растения являются полиплоидами. (5) Полиплоидные клетки содержат одну–три лишние хромосомы. (6) Полиплоидные растения характеризуются более мощным ростом и крупными размерами. (7) Полиплоидию широко используют как в селекции растений, так и в селекции животных.

Ответ


Проанализируйте таблицу «Виды изменчивости». Для каждой ячейки, обозначенной буквой, выберите соответствующее понятие или соответствующий пример из предложенного списка.
1) соматические
2) генные
3) замена одного нуклеотида на другой
4) удвоение гена в участке хромосомы
5) добавление или выпадение нуклеотидов
6) гемофилия
7) дальтонизм
8) трисомия в хромосомном наборе

Ответ

© Д.В.Поздняков, 2009-2019

Виды генных мутаций:

Генные мутации возникаю чаще, чем хромосомные и геномные, но менее значительно меняют структуру ДНК, в основном касаются только химической структуры отдельно взятого гена. Представляют собой замену, удаление или вставку нуклеотида, иногда нескольких. Также к генным мутациям относятся транслокации (перенос), дупликации (повторение), инверсии (переворот на 180°) участков гена, но не хромосомы.

Генные мутации происходят при репликации ДНК, кроссинговере, возможны в остальные периоды клеточного цикла. Механизмы репарации не всегда устраняют мутации и повреждения ДНК. Кроме того сами могут служить источником генных мутаций. Например, при объединении концов разорванной хромосомы часто теряется несколько нуклеотидных пар.

Если системы репарации перестают нормально функционировать, то происходит быстрое накопление мутаций. Если мутации возникают в генах, кодирующих ферменты репарации, то может нарушится работа одного или нескольких его механизмов, в результате чего количество мутаций сильно возрастет. Однако иногда бывает обратный эффект, когда мутация генов ферментов репарации приводит к снижению частоты мутаций других генов.

Помимо первичных мутаций в клетках могут происходить и обратные, восстанавливающие исходный ген.

Большинство генных изменений, как и мутаций двух других видов, вредны. Появление мутаций, обусловливающих полезные признаки для определенных условий среды, происходит редко. Однако именно они делают возможным процесс эволюции.

Генные мутации затрагивают не генотип, а отдельные участки гена, что, в свою очередь, обуславливает появление нового варианта признака, т. е. аллели, а не нового признака как такового. Мутон - это элементарная единица мутационного процесса, способная приводить к появлению нового варианта признака. Зачастую, для этого достаточно изменить одну пару нуклеотидов. С этой точки зрения мутон соответствует одной паре комплементарных нуклеотидов. С другой стороны, не все генные мутации являются мутонами с точки зрения последствий. Если изменение нуклеотидной последовательности не влечет за собой изменения признака, то с функциональной точки зрения мутации не произошло.

Одной паре нуклеотидов соответствует и рекон - элементарная единица рекомбинации. При кроссинговере в случае нарушения рекомбинации происходит неравный обмен участками между конъюгирующими хромосомами. В результате происходит вставка и выпадение нуклеотидных пар, что влечет сдвиг рамки считывания, в дальнейшем нарушение синтеза пептида с необходимыми свойствами. Таким образом для искажения генетической информации достаточно одной лишней или потерянной пары нуклеотидов.

Частота спонтанных генных мутаций находится в пределах от 10 -12 до 10 -9 на каждый нуклеотид ДНК на каждое деление клетки. Для проведения исследований ученые подвергают клетки воздействию химических, физических и биологических мутагенов. Вызванные таким образом мутации, называются индуцированными , их частота выше.

Замена азотистых оснований

Если происходит изменение только одного нуклеотида в ДНК, то такая мутация называется точечной . В случае мутаций по типу замены азотистых оснований одна комплементарная нуклеотидная пара молекулы ДНК заменяется в ряду циклов репликации на другую. Частота подобных происшествий составляет около 20% от общей массы всех генных мутаций.

Примером подобного является дезаминирование цитозина, в результате чего образуется урацил.

В ДНК образуется нуклеотидная пара Г-У, вместо Г-Ц. Если ошибка не будет репарирована ферментом ДНК-гликолазой, то при репликации произойдет следующее. Цепи разойдутся, напротив гуанина будет установлен цитозин, а напротив урацила - аденин. Таким образом, одна из дочерних молекул ДНК будет содержать аномальную пару У-А. При ее последующей репликации в одной из молекул напротив аденина будет установлен тимин. Т. е. в гене произойдет замена пары Г-Ц на А-Т.

Другим примером является дезаминирование метилированного цитозина, в результате которого образуется тимин. В последствии может возникнуть ген с парой Т-А вместо Ц-Г.

Могут быть и обратные замены: пара А-Т при определенных химических реакциях может заменяться на Ц-Г. Например, в процессе репликации к аденину может присоединиться бромурацил, который при следующей репликации присоединяет к себе гуанин. В следующем цикле гуанин свяжется с цитозином. Таким образом в гене пара А-Т заменится на Ц-Г.

Замена одного пиримидина на другой пиримидин или одного пурина на другой пурин называется транзицией . Пиримидинами являются цитозин, тимин, урацил. Пуринами - аденин и гуанин. Замена пурина на пиримидин или пиримидина на пурин называется трансверсией .

Точечная мутация может не привести ни к каким последствиям из-за вырожденности генетического кода, когда несколько кодонов-триплетов кодируют одну и ту же аминокислоту. Т. е. в результате замены одного нуклеотида может образоваться другой кодон, но кодирующий ту же аминокислоту, что и старый. Такая замена нуклеотидов называется синонимической . Их частота около 25% от всех замен нуклеотидов. Если же смысл кодона меняется, он начинает кодировать другую аминокислоту, то замена называется мисенс-мутацией . Их частота около 70%.

В случае мисенс-мутации при трансляции в пептид будет включена не та аминокислота, в результате чего его свойства изменятся. От степени изменения свойств белка зависит степень изменения более сложных признаков организма. Например, при серповидно-клеточной анемии в белке заменена лишь одна аминокислота - глутамин на валин. Если же глутамин заменяется на лизин, то свойства белка меняются не сильно, т. е. обе аминокислоты гидрофильны.

Точечная мутация может быть такой, что на месте кодирующего аминокислоту кодона возникает стоп-кодон (УАГ, УАА, УГА), прерывающий (терминирующий) трансляцию. Это нонсенс-мутации . Иногда бывают и обратные замены, когда на месте стоп-кодона возникает смысловой. При любой подобной генной мутации функциональный белок уже не может быть синтезирован.

Сдвиг рамки считывания

К генным относятся мутации обусловленные сдвигом рамки считывания, когда происходит изменение количества нуклеотидных пар в составе гена. Это может быть как выпадение, так и вставка одной или нескольких нуклеотидных пар в ДНК. Генных мутаций по типу сдвига рамки считывания больше всего. Наиболее часто они возникают в повторяющихся нуклеотидных последовательностях.

Вставка или выпадение нуклеотидных пар может произойти в следствие воздействия определенных химических веществ, которые деформируют двойную спираль ДНК.

Рентгеновское облучение может приводить к выпадению, т. е. делеции, участка с большим количеством пар нуклеотидов.

Вставки нередки при включении в нуклеотидную последовательность так называемых подвижных генетических элементов , которые могут менять свое положение.

К генным мутациям приводит неравный кроссинговер. Чаще всего он происходит в тех участках хромосом, где локализуются несколько копий одного и того же гена. При этом кроссинговер происходит так, что в одной хромосоме возникает делеция участка. Этот участок переносится на гомологичную хромосому, в которой возникает дупликация участка гена.

Если происходит делеция или вставка числа нуклеотидов не кратного трем, то рамка считывания сдвигается, и трансляция генетического кода зачастую обессмысливается. Кроме того, может возникнуть нонсенс-триплет.

Если количество вставленных или выпавших нуклеотидов кратно трем, то, можно сказать, сдвиг рамки считывания не происходит. Однако при трансляции таких генов в пептидную цепь будут включены лишние или утрачены значащие аминокислоты.

Инверсия в пределах гена

Если инверсия участка ДНК происходит внутри одного гена, то такую мутацию относят к генным. Инверсии более крупных участков относятся к хромосомным мутациям.

Инверсия происходит вследствие поворота участка ДНК на 180°. Часто это происходит при образовании петли в молекуле ДНК. При репликации в петле репликация идет в обратном направлении. Далее этот кусок сшивается с остальной нитью ДНК, но оказывается перевернутым наоборот.

Если инверсия случается в смысловом гене, то при синтезе пептида часть его аминокислот будет иметь обратную последовательность, что скажется на свойствах белка.