Плотность земли. Изучение планеты Средняя плотность земли составляет

Масса Земли равна 5,98 X 10 24 кг, т. е. около 6 тыс. триллионов т, а её средняя плотность 5,52 г/куб. см. Вместе с тем средняя плотность внешних слоёв земной коры вдвое меньше.

Сопоставляя эти цифры, необходимо прийти к выводу, что внутренность нашей планеты должна иметь плотность не менее 8,37.

В центре Земли плотность достигает 17,2 г/куб. см при давлении 3 млн. атм и что она особенно резким скачком (от 5,7 к 9,4) меняется на глубине 2900 км, а затем на глубине 5 тыс. км. Первый скачок позволяет выделить в земном шаре плотное ядро, а второй - подразделить это ядро на внешнюю (2900-5000 км) и внутреннюю (от 5 тыс. км до центра) части.

Естественнее всего думать, что столь высокая плотность центральных частей обусловлена огромными давлениями, существующими в глубине Земли, в результате чего материя находится там в состояние исключительно большого сжатия. Это объяснение сейчас приобретает всё большее число сторонников. Пока давление в Земле не достигает известного критического предела - плотность изменяется постепенно; когда этот предел (видимо, 1,3 млн. атм) достигнут, - вещество скачком переходит в более плотную «металлоподобную» фазу.

Другое объяснение сводится к предположению, что внутренность Земли состоит из веществ большего удельного веса, чем земная кора, преимущественно из металлов. Так как плотность и твёрдость внутренних частей Земли сравнительно мало отличаются от плотности и твёрдости железа в обычных физических условиях, то большинство учёных придерживается мнения, что земное ядро построено из железа с примесью никеля. Таким образом, вторая гипотеза постулирует расслоение Земли на оболочки, резко отличающиеся по своему химическому составу; первая же, не отрицая известной дифференциации вещества по удельному весу, главную причину изменения плотности материи внутри Земли видит в физических условиях (возрастании давления) и полностью отрицает существование металлического ядра. Средняя плотность планет тем выше, чем больше размеры планеты: Меркурий 3,8 г/куб. см, Марс 3,93, Земля 5,52. Это говорит о возможности значительного уплотнения вещества под действием возрастающего давления.

Особенно крупные услуги в изучении глубоких недр земного шара оказывает сейсмология, наука о землетрясениях. Сейсмические волны в руках современных геофизиков стали своего рода лучами, как бы просвечивающими нашу планету и позволяющими делать известные заключения об её внутреннем состоянии и строении.

Землетрясение - это результат внутренних напряжений в земном веществе, приводящих к разрыву масс и к их смещению. Смещение может быть очень небольшое, но упругие волны, порождённые им, распространяются в теле Земли на громадные расстояния от места своего возникновения, именуемого очагом. Центр тяжести сейсмического очага носит название гипоцентра. Действие волн скажется для нас прежде всего в той точке (вернее области) земной поверхности, которая находится ближе всего к очагу, - в так называемом эпицентре, лежащем на одной вертикали с гипоцентром.

Упругая волна - сферическая. Радиусы сферы, т. е. траектории распространения волн, называются сейсмическими лучами.

При землетрясении возникают волны трёх родов:

1) продольные волны (Р), могут возникать в любых телах - твёрдых, жидких и газообразных; напоминают звуковые волны; движутся быстрее всех других волн, порождаемых землетрясением;

2) поперечные волны (S), движущиеся медленнее продольных; напоминают световые волны; являются волнами сдвига, могут возникать и распространяться только в твёрдой среде;

3) ещё более медленные поверхностные волны (L) - сложная группа волн, которые образуются только в поверхностных частях земной коры, а на глубине затухают; начинаясь от эпицентра, они вызывают на земной поверхности сильные смещения и разрушения.

Все эти волны расходятся от сейсмического очага разными путями, вследствие чего на станции, удалённой от эпицентра, прибытие их регистрируется разновременно. Позже всего приходят длинные волны L, так как они распространяются только по периферии Земли. Волны Р и S, пронизывающие тело Земли на больших глубинах, приходят раньше, причём первыми регистрируются более быстрые продольные волны (Р - primae - первые), а затем более медленные поперечные (S - secundae - вторые).

Если бы тело Земли было однородно, сейсмические лучи волн Р и S были бы прямыми линиями. Постепенное увеличение плотности Земли с глубиной дало бы вогнутые траектории, обращённые выпуклостью внутрь Земли. Если же плотность Земли с глубиной меняется скачками, то в этих вогнутых кривых должны быть переломы на границах сред, обладающих разными плотностями, не говоря уже о частичном отражении волн. Именно последнюю картину мы и наблюдаем.

Исследование скоростей сейсмических волн, их характера и траекторий приводит к следующим заключениям:

1) при прохождении сквозь тело Земли продольных и поперечных волн скорости этих волн изменяются, что свидетельствует об изменениях свойств проходимой ими среды;

2) скорости изменяются скачками, - значит, изменение свойств среды происходит тоже скачками;

Имеется в сущности два резких перелома скоростей: на глубине 60 км и на глубине 2900 км. Иными словами, отчётливо обособляются только внешний слой (земная кора) и внутреннее ядро. В промежуточном между ними поясе, а также внутри ядра налицо лишь изменение темпа увеличения скоростей.

Видно также, что Земля до глубины 2900 км находится в твёрдом состоянии, так как через эту толщу свободно проходят поперечные упругие волны, которые только и могут возникать и распространяться в твёрдой среде. Прохождение поперечных волн сквозь ядро не наблюдалось, и это давало основание считать его жидким. Однако новейшие расчёты М. С. Молоденского показывают, что хотя модуль сдвига в ядре невелик, но всё же не равен нулю (как это характерно для жидкости) и, стало быть, ядро Земли ближе к твёрдому, чем к жидкому состоянию. Разумеется, в данном случае понятия «твёрдого» и «жидкого» нельзя отождествлять с аналогичными понятиями, применяемыми к агрегатным состояниям вещества на земной поверхности: внутри Земли господствуют высокие температуры и огромные давления, каких нет в ландшафтной оболочке.

О химическом составе внутренних частей планеты нет единодушного мнения, так как говорить о химическом составе вещества, опираясь по сути дела только на представления об изменении его плотности, весьма затруднительно.

Земная кора состоит преимущественно из гранитов; осадочные породы в ней имеют подчинённое значение. Под гранитной оболочкой предполагают существование слоя, близкого по составу к базальту или перидотиту. На сравнительно уже небольших глубинах, где температура и давление достаточно высоки, твёрдые горные породы обладают свойством пластичности, т. е., подвергаясь давлению, способны менять свою форму и сохранять это изменение формы после прекращения давления.

Гранитная оболочка, в составе которой огромную роль играют кремний (Si) и алюминий (Al), называется «сиалической», или просто «сиаль». Удельный вес её в среднем 2,7-2,8. Она не сплошная и характеризуется переменной мощностью: в Западной Европе и Северной Америке 26-28 км, на Кавказе 50 км, в Тянь-Шане 84 км, в Атлантическом океане до 18 км; в центральных частях Тихого океана сиаля нет вовсе. И прерывистость распространения, и различная мощность одинаково говорят против того, что гранитная оболочка есть результат застывания первоначально расплавленной земной поверхности, т. е. «жора» в собственном смысле этого слова: из расплава должна была бы образоваться сплошная сиалическая оболочка и притом одинаковой толщины.

Подстилающий гранитную оболочку базальтовый слой, где, кроме кремния и алюминия, важную роль играет ещё и магний, принято сокращённо обозначать «сима» (силиций + магний). Эта оболочка, удельный вес которой 3,2-3,3, уже сплошная. В глубоких местах Тихого и Атлантического океанов сима либо непосредственно слагает самое дно, будучи перекрыта небольшой толщей морских грунтов и водой, либо отделена от воды тонкой (около 5 км) корой сиаля.

Чем можно объяснить расслоение Земли по крайней мере на две концентрические сферы, облекающие плотное ядро?

Земля возникла как холодное тело из постепенно разраставшегося сгустка космической пыли и была первоначально однородна по своему составу в том смысле, что вещество её представляло беспорядочную смесь частиц различного удельного веса. По достижении планетой определённых размеров в ней началась физико-химическая и гравитационная дифференциация вещества, т. е. очень медленное опускание более тяжёлых элементов вглубь и поднятие более легких кверху. На глубине скорость этого процесса была меньше, чем в верхних слоях, так как вязкость вещества, под влиянием всё возрастающего давления, с глубиной увеличивается. Надо поэтому думать, что обособление так называемой земной «коры» и обособление ядра обязаны существенно разным причинам. Ядро возникло путём скачкообразного уплотнения вещества, когда внутри растущей планеты давление достигло некоторого критического значения. По Б. Ю. Левину, это могло случиться только после того, как масса Земли выросла до 0,8 её современной массы; образование ядра сопровождалось, вследствие уменьшения объёма центральных частей планеты, опусканием поверхности Земли примерно на 100 км. Что касается поверхностных слоёв, то здесь дифференциация протекала легче и притом в своём наиболее чистом виде: из однородной массы базальтового состава выделились и всплыли кверху более лёгкие кислые составные части. Возникновение ядра сузило область действия дифференциации: его уплотнённое давлением вещество в значительной степени утеряло «потребность» (и физическую возможность) к всплыванию на более высокие уровни за пределы ядра. Уже одно это говорит против предположения, будто ядро может состоять из какого-то одного, почти в совершенстве «отпрепарированного» вещества (например, железа). По-видимому, оно даже гораздо меньше дифференцировано, чем вышележащие слои.

Хорошее доказательство дифференциации можно найти в характере извержений современных нам вулканов. Последнее извержение Геклы началось 29 марта 1947 г. и продолжалось 13 месяцев, причём лава начальной фазы извержения состояла из более кислых продуктов (59% SiO 2), чем лава последней фазы (54% SiO 2 - базальт). Очевидно, более кислая лава поступала из верхних частей магматического бассейна, основная - из более глубоких. Это свидетельствует, что за сто лет, прошедших со дня предыдущего извержения (1845 г.), в магматическом очаге, находившемся в спокойном состоянии, лава как бы «отстоялась», произошла её гравитационная дифференциация: более кислые лёгкие части оказались вверху, более основные, тяжёлые - внизу.

Если какой-нибудь вулкан извергается часто - лава не успевает дифференцироваться и заметного различия в продуктах извержения нет. Но чем дольше период покоя между извержениями, тем глубже дифференциация, - оттого одни и те же вулканы в одних случаях изливают основную лаву, в других кислую.

Излияние жидкой расплавленной лавы на поверхность не противоречит утверждению, что недра Земли находятся в твёрдом состоянии. Отдельные магматические очаги могут возникать под влиянием разогрева земной коры в областях значительной местной концентрации радиоактивных элементов. Кроме того, на больших глубинах, где температуры высоки и в обычных условиях были бы достаточны для расплавления горных пород, последние продолжают оставаться твёрдыми по причине колоссальных давлений, повышающих температуру плавления. Следовательно, достаточно ослабить давление, чтобы перегретое вещество перешло в жидкость и стало содержащимися в нём газами увлекаться к поверхности Земли. При гравитационной дифференциации восходящие движения, т. е. перенос вещества в области убывающего давления, осуществляются в самом широком масштабе.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Земная кора в научном понимании представляет собой самую верхнюю и твердую геологическую часть оболочки нашей планеты.

Научные исследования позволяют изучить ее досконально. Этому способствуют многократные бурения скважин как на континентах, так и на океанском дне. Строение земли и земной коры на различных участках планеты отличаются и и по составу, и по характеристикам. Верхней границей земной коры является видимый рельеф, а нижней - зона разделения двух сред, которая также известна как поверхность Мохоровичича. Часто ее называют просто "граница М". Это наименование она получила благодаря хорватскому сейсмологу Мохоровичичу А. Он долгие годы наблюдал за скоростью сейсмических движений в зависимости от уровня глубины. В 1909 году он установил наличие разницы между земной корой и раскаленной мантией Земли. Граница М пролегает на том уровне, где скорость сейсмических волн повышается с 7.4 до 8.0 км/с.

Химический состав Земли

Изучая оболочки нашей планеты, ученые делали интересные и даже потрясающие выводы. Особенности строения земной коры делают ее схожей с такими же участками на Марсе и Венере. Более чем 90 % составляющих элементов ее представлены кислородом, кремнием, железом, алюминием, кальцием, калием, магнием, натрием. Сочетаясь между собой в различных комбинациях, они образуют однородные физические тела - минералы. Они могут войти в состав горных пород в разных концентрациях. Строение земной коры весьма неоднородно. Так, горные породы в обобщенном виде представляют собой агрегаты более-менее постоянного химического состава. Это самостоятельные геологические тела. Под ними понимается четко очерченная область земной коры, имеющая в своих границах одинаковое происхождение, возраст.

Горные породы по группам

1. Магматические. Название говорит само за себя. Они возникают из остывшей магмы, вытекающей из жерла древних вулканов. Строение этих пород напрямую зависит от скорости застывания лавы. Чем она больше, тем меньше кристаллы вещества. Гранит, например, сформировался в толще земной коры, а базальт появился в результате постепенного излияния магмы на ее поверхность. Многообразие таких пород довольно велико. Рассматривая строение земной коры, мы видим, что она состоит из магматических минералов на 60 %.

2. Осадочные. Это породы, которые стали результатом постепенного отложения на суше и дне океана обломков тех или иных минералов. Это могут быть как рыхлые компоненты (песок, галька), сцементированные (песчаник), остатки микроорганизмов (каменный уголь, известняк), продукты химических реакций (калийная соль). Они составляют до 75 % всей земной коры на материках.
По физиологическому способу образования осадочные породы делятся на:

  • Обломочные. Это остатки различных горных пород. Они разрушались под воздействием природных факторов (землетрясение, тайфун, цунами). К ним можно отнести песок, гальку, гравий, щебень, глину.
  • Химические. Они постепенно образуются из водных растворов тех или иных минеральных веществ (соли).
  • Органические или биогенные. Состоят из останков животных или растений. Это горючие сланцы, газ, нефть, уголь, известняк, фосфориты, мел.

3. Метаморфические породы. В них могут превращаться другие компоненты. Это происходит под воздействием изменяющейся температуры, большого давления, растворов или газов. Например, из известняка можно получить мрамор, из гранита - гнейс, из песка - кварцит.

Минералы и горные породы, которые человечество активно использует в своей жизнедеятельности, называются полезными ископаемыми. Что они собой представляют?

Это природные минеральные образования, которые влияют на строение земли и земной коры. Они могут использоваться в сельском хозяйстве и промышленности как в естественном виде, так и подвергаясь переработке.

Виды полезных минералов. Их классификация

В зависимости от физического состояния и агрегации, полезные ископаемые можно разделить на категории:

  1. Твердые (руда, мрамор, уголь).
  2. Жидкие (минеральная вода, нефть).
  3. Газообразные (метан).

Характеристики отдельных видов полезных ископаемых

По составу и особенностям применения различают:

  1. Горючие (уголь, нефть, газ).
  2. Рудные. Они включают радиоактивные (радий, уран) и благородные металлы (серебро, золото, платина). Есть руды черных (железо, марганец, хром) и цветных металлов (медь, олово, цинк, алюминий).
  3. Нерудные полезные ископаемые играют существенную роль в таком понятии, как строение земной коры. География их обширна. Это неметаллические и негорючие горные породы. Это строительные материалы (песок, гравий, глина) и химические вещества (сера, фосфаты, калийные соли). Отдельный раздел посвящен драгоценным и поделочным камням.

Распределение полезных ископаемых по нашей планете напрямую зависит от внешних факторов и геологических закономерностей.

Так, топливные полезные ископаемые в первую очередь добываются в нефтегазоносных и угольных бассейнах. Они имеют осадочное происхождение и формируются на осадочных чехлах платформ. Нефть и уголь крайне редко залегают вместе.

Рудные полезные ископаемые чаще всего соответствуют фундаменту, выступам и складчатым областям платформенных плит. В таких местах они могут создавать огромные по протяженности пояса.

Ядро


Земная оболочка, как известно, многослойна. Ядро располагается в самом центре, а его радиус приблизительно равен 3 500 км. Его температура гораздо выше, чем у Солнца и составляет около 10000 К. Точных данных о химическом составе ядра не получено, но предположительно оно состоит из никеля и железа.

Внешнее ядро находится в расплавленном состоянии и имеет еще большую мощность, чем внутреннее. Последнее подвергается колоссальному давлению. Вещества, из которых оно состоит, находятся в постоянном твердом состоянии.

Мантия

Геосфера Земли окружает ядро и составляет около 83 процентов от всей оболочки нашей планеты. Нижняя граница мантии находится на огромной глубине почти 3000 км. Данную оболочку принято условно разделять на менее пластичную и плотную верхнюю часть (именно из нее образуется магма) и на нижнюю кристаллическую, ширина которой составляет 2000 километров.

Состав и строение земной коры

Для того чтобы говорить о том, какие элементы входят в состав литосферы, нужно дать некоторые понятия.

Земная кора - это самая внешняя оболочка литосферы. Ее плотность меньше в два раза по сравнению со средней плотностью планеты.

От мантии земная кора отделена границей М, о которой уже говорилось выше. Так как процессы, происходящие на обоих участках, взаимно влияют друг на друга, их симбиоз принято называть литосферой. Это означает "каменная оболочка". Ее мощность колеблется в пределах 50-200 километров.

Ниже литосферы расположена астеносфера, которая обладает менее плотной и вязкой консистенцией. Ее температура составляет около 1200 градусов. Уникальной особенностью астеносферы является возможность нарушать свои границы и проникать в литосферу. Она является источником вулканизма. Здесь находятся расплавленные очаги магмы, которая внедряется в земную кору и изливается на поверхность. Изучая эти процессы, ученые смогли сделать много удивительных открытий. Именно так изучалось строение земной коры. Литосфера была сформирована много тысяч лет назад, но и сейчас в ней происходят активные процессы.

Структурные элементы земной коры

По сравнению с мантией и ядром, литосфера - это жесткий, тонкий и очень хрупкий слой. Она сложена из комбинации веществ, в составе которых на сегодняшний день обнаружено более 90 химических элементов. Они распределены неоднородно. 98 процентов массы земной коры приходится на семь составляющих. Это кислород, железо, кальций, алюминий, калий, натрий и магний. Возраст самых древних пород и минералов составляет более 4.5 миллиардов лет.

Изучая внутреннее строение земной коры, можно выделить различные минералы.
Минерал - сравнительно однородное вещество, которое может находиться как внутри, так и на поверхности литосферы. Это кварц, гипс, тальк и т.д. Горные породы слагаются из одного или нескольких минералов.

Процессы, формирующие земную кору

Строение океанической земной коры

Данная часть литосферы преимущественно состоит из базальтовых пород. Строение океанической земной коры изучено не так досконально, как континентальное. Теория тектонических плит объясняет, что океаническая земная кора является относительно молодой, а самые ее последние участки можно датировать поздней юрой.
Ее толщина практически не изменяется со временем, так как она определяется количеством расплавов, выделяющихся из мантии в зоне срединно-океанических хребтов. На нее существенно влияет глубина осадочных слоев на дне океана. В наиболее объемных участках она составляет от 5 до 10 километров. Данный вид земной оболочки относится к океанической литосфере.

Континентальная кора

Литосфера взаимодействует с атмосферой, гидросферой и биосферой. В процессе синтеза они образуют самую сложную и реакционно активную оболочку Земли. Именно в тектоносфере происходят процессы, изменяющие состав и строение этих оболочек.
Литосфера на земной поверхности не однородна. Она имеет несколько слоев.

  1. Осадочный. Он в основном образуется горными породами. Здесь преобладают глины и сланцы, а также широко распространены карбонатные, вулканогенные и песчаные породы. В осадочных слоях можно встретить такие полезные ископаемые, как газ, нефть и каменный уголь. Все они имеют органическое происхождение.
  2. Гранитный слой. Он состоит из магматических и метаморфических пород, которые наиболее близки по своей природе к граниту. Этот слой встречается далеко не везде, наиболее ярко он выражен на континентах. Здесь его глубина может составлять десятки километров.
  3. Базальтовый слой образуют породы, близкие к одноименному минералу. Он более плотный, чем гранит.

Глубина и изменение температуры земной коры

Поверхностный слой прогревается солнечным теплом. Это гелиометрическая оболочка. Она испытывает сезонные колебания температуры. Средняя мощность слоя составляет около 30 м.

Ниже находится слой, еще более тонкий и хрупкий. Его температура постоянна и приблизительно равна среднегодовой, характерной для этой области планеты. В зависимости от континентального климата глубина этого слоя увеличивается.
Еще глубже в земной коре находится еще один уровень. Это геотермический слой. Строение земной коры предусматривает его наличие, а его температура определяется внутренним теплом Земли и возрастает с глубиной.

Повышение температуры происходит за счет распада радиоактивных веществ, которые входят в состав горных пород. В первую очередь это радий и уран.

Геометрический градиент - величина нарастания температуры в зависимости от степени увеличения глубины слоев. Этот параметр зависит от разных факторов. Строение и типы земной коры влияют на него, так же как и состав горных пород, уровень и условия их залегания.

Тепло земной коры является важным энергетическим источником. Его изучение очень актуально на сегодняшний день.


Введение

Три наружные оболочки Земли, различающиеся фазовым состоянием, – твердая земная кора, жидкая гидросфера и газовая атмосфера – тесно связаны между собой, а вещество каждой из них проникает в пределы других. Подземные воды пронизывают верхнюю часть земной коры, значительный объем газов находится не в атмосфере, а растворен в гидросфере и заполняет пустоты в почве и горных породах. В свою очередь, вода и мелкие твердые минеральные частицы насыщают нижние слои атмосферы.

Наружные оболочки связаны не только пространственно, но и генетически. Происхождение оболочек, формирование их состава и его дальнейшая эволюция взаимосвязаны. В настоящее время эта связь в значительной мере обусловлена тем, что наружная часть планеты охвачена геохимической деятельностью живого вещества.

Массы оболочек сильно различаются. Масса земной коры оценивается в 28,46×10 18 т, Мирового океана – 1,47×10 18 т, атмосферы – 0,005×10 18 т. Следовательно, в земной коре находится основной резерв химических элементов, которые вовлекаются в миграционные процессы под воздействием живого вещества. Концентрации и распределение химических элементов в земной коре оказывают сильное влияние на состав живых организмов суши и всего живого вещества Земли.

Рассматривая проблему состава живого вещества, В.И. Вернадский отмечал: «…химический состав организмов теснейшим образом связан с химическим составом земной коры; организмы приноравливаются к нему».


Химики и петрографы начиная со второй половины XIX в. изучали химический состав горных пород методами весового и объемного химического анализа. Суммируя результаты многочисленных анализов горных пород, Ф. Кларк показал, что в земной коре преобладают восемь химических элементов: кислород, кремний, алюминий, железо, магний, кальций, калий и натрий. Этот основной вывод неоднократно подтвержден результатами последующих исследований. Методами химического анализа, которыми пользовались в XIX в., определение низких концентраций элементов было невозможно. Требовались принципиально иные подходы.

Мощный импульс изучению химических элементов с очень низкой концентрацией в веществе земной коры дало применение более чувствительного метода – спектроскопического анализа. Новые факты позволили В.И. Вернадскому сформулировать принцип «всюдности» всех химических элементов. В докладе на XII съезде российских естествоиспытателей и врачей в декабре 1909 г. он заявил: «В каждой капле и пылинке вещества на земной поверхности, по мере увеличения тонкости наших исследований, мы открываем все новые и новые элементы… В песчинке или в капле, как в микрокосмосе, отражается общий состав космоса».

Идея «всюдности» химических элементов долгое время вызывала настороженность даже со стороны крупных ученых. Это было связано с тем, что элементы, содержащиеся в количестве ниже уровня чувствительности метода, при анализе не обнаруживались. Создавалась иллюзия их полного отсутствия, что отразилось на терминологии. В геохимии возникли термины редкие элементы (dieselteneElementen– нем.; rareelements– англ.), частота (dieHaufigkeit– нем.) обнаружения. В действительности имеет место не реальная редкость или малая частота встречаемости элемента при анализах, а его низкая концентрация в изучаемых пробах, которая не может быть определена недостаточно чувствительными методами анализа.

Низкая чувствительность метода часто не позволяла определять количество элемента, а лишь констатировать присутствие его «следов». С тех пор в геохимической литературе широко используется термин? применявшийся В.М. Гольдшмидтом и его коллегами в 1930-х гг.: элементы-следы (dieSpurelemente– нем.; traceelements– англ.; deselementstraces– фр.).

В итоге усилий ученых разных стран в 20-х гг. XX в. сложилось общее представление о составе земной коры. Средние значения относительного содержания химических элементов в земной коре и других глобальных и космических системах известный геохимик А.Е. Ферсман предложил называть кларками в честь ученого, который наметил путь к количественной оценке распространения химических элементов.

Кларк – весьма важная величина в геохимии. Анализ значений кларков позволяет понять многие закономерности распределения химических элементов на Земле, в Солнечной системе и доступной нашим наблюдениям части Вселенной. Кларки химических элементов земной коры различаются более чем на десять математических порядков. Столь существенное количественное различие должно отразиться на качественно неодинаковой роли двух групп элементов в земной коре. Наиболее ярко это проявляется в том, что элементы первой группы, содержащиеся в относительно большом количестве, образуют самостоятельные химические соединения, а элементы второй группы с малыми кларками преимущественно распылены, рассеяны среди химических соединений других элементов. Элементы первой группы называют главными, элементы второй – рассеянными. Их синонимами в английском языке являются minorelements, rareelements, наиболее употребляемый синоним traceelements. Условной границей между группами главных и рассеянных элементов в земной коре может служить величина 0,1%, хотя кларки большей части рассеянных элементов значительно меньше и измеряются тысячными и меньшими долями процента. Понятие о состоянии рассеяния химических элементов, так же как и о их «всюдности», было введено в науку В.И. Вернадским.

Полный химический состав верхнего, так называемого гранитного, слоя континентального блока земной коры приведен в табл. 1.1.

Таблица 1.1 Кларки химических элементов гранитного слоя коры континентов

Химический элемент Атомный номер Среднее содержание, 1 × 10 -4 % Химический элемент Атомный номер Среднее содержание, 1 × 10 -4 %
О 8 481 000 Mg 12 12000
Si 14 399 000 Ti 22 3300
А1 13 80 000 H 1 1000
Fe 26 36000 P 15 800
К 19 27000 F 9 700
Са 20 25000 Мn 25 700
Na 11 22000 Ва 56 680
S 16 400 Ег 68 3,6
С 6 300 Yb 70 3,6
Sr 38 230 Hf 72 3,5
Rb 37 180 Sn 50 2,7
Cl 17 170 и 92 2,6
Zr 40 170 Be 4 2,5
Се 58 83 Br 35 2,2
V 23 76 Та 73 2,1
Zn 30 51 As 33 1,9
La 57 46 W 74 1,9
Yr 39 38 Ho 67 1,8
Cl 24 34 Tl 81 1,8
Nd 60 33 Eu 63 1,4
Li 3 30 Tb 65 1,4
N 7 26 Ge 32 1,3
Ni 28 26 Mo 42 1,3
Cu 29 22 Lu 71 1,1
Nb 41 20 I 53 0,5
Ga 31 18 Tu 69 0,3
Pb 82 16 In 49 0,25
Th 90 16 Sb 51 0,20
Sc 21 11 Cd 48 0,16
В 5 10 Se 34 0,14
Sm 62 9 Ag 47 0,088
Gd 64 9 Hg 80 0,033
Pr 59 7,9 Bi 83 0,010
Co 27 7,3 Au 79 0,0012
Dy 66 6,5 Те 52 0,0010
Cs 55 3,8 Re 75 0,0007

Для образования любого химического соединения требуется концентрация исходных компонентов не меньше минимальной, ниже которой реакция невозможна. Поэтому в земной коре преобладают химические соединения главных элементов с высокими кларками. Несмотря на то, что общее количество природных химических соединений – минералов – составляет 2-3 тыс. видов, число минералов, образующих распространенные горные породы, невелико. Более 80% массы земной коры представлено силикатами алюминия, железа, кальция, магния, калия и натрия; около 12% составляет оксид кремния. Все эти минералы имеют кристаллическое строение, которое и определяет общие особенности кристаллохимии земной коры.

В.М. Гольдшмидт показал, что силикатный состав и кристаллическое строение земной коры весьма важны для распределения не главных, рассеянных элементов. Согласно концепции Гольдшмидта в кристаллохимических структурах ионы ведут себя как жесткие сферы (твердые шары). Поэтому радиус каждого иона рассматривается как постоянная величина.

Главная особенность ионов в кристаллохимических структурах заключается в том, что радиусы отрицательно заряженных ионов (анионов) значительно больше радиусов положительно заряженных ионов (катионов). Представим анионы в виде крупных шаров, а катионы – в виде мелких. Тогда моделью кристаллического вещества с ионным типом связи будет пространство, заполненное плотно прилегающими большими шарами – анионами, между которыми должны размещаться мелкие шарики – катионы. Согласно представлениям Гольдшмидта этот каркас играет роль своеобразного геохимического фильтра, способствующего дифференциации химических элементов по величине их ионов. В конкретную кристаллохимическую структуру могут войти не любые элементы, обладающие необходимой валентностью, а лишь те, ионы которых имеют соответствующий размер радиусов.

Образование распространенных минералов сопровождается своего рода сортировкой рассеянных элементов. Для пояснения этого процесса обратимся к распространенному минералу – полевому шпату. Его кристаллохимическая структура образована группировками, состоящими из трех катионов кремния и одного алюминия, каждый из которых связан с четырьмя анионами кислорода. Группировка в целом представляет собой комплексный анион, где восемь ионов кислорода, три кремния и один алюминия. Это создает один отрицательный заряд, который уравновешивается одновалентным катионом калия. В итоге существует трехкамерная структура, состав которой отвечает формуле K.

Величина радиуса иона калия составляет 0,133 нм. Его место в структуре может занять только катион с близкой величиной радиуса. Таковым является двухвалентный катион бария, радиус которого равен 0,134 нм. Барий менее распространен, чем калий. Обычно он присутствует в виде незначительной примеси в полевых шпатах. Только в особых случаях создается его значительная концентрация и образуется редкий минерал цельзиан (бариевый полевой шпат).

Аналогичным образом в распространенных минералах и горных породах избирательно задерживаются химические элементы, концентрация которых не так велика для образования самостоятельных минералов. Взаимное замещение ионов в кристаллической структуре благодаря близости их радиусов называется изоморфизмом. Это явление было обнаружено еще в начале XIX в., но его значение для глобальной дифференциации рассеянных химических элементов установлено только спустя столетие.

В результате изоморфизма рассеянные элементы закономерно концентрируются в определенных минералах. Полевые шпаты служат носителями бария, стронция, свинца; оливины – никеля и кобальта; цирконы – гафния и т.д. Такие элементы, как рубидий, рений, гафний, не образуют самостоятельных соединений в литосфере и полностью рассеяны в кристаллохимических структурах минералов-хозяев.

Изоморфные замещения – не единственная форма нахождения рассеянных элементов. Феномен рассеяния в земной коре проявляется в разных формах на разном уровне дисперсности.

Наиболее грубодисперсной формой рассеяния являются хорошо окристаллизованные, очень мелкие (обычно менее 0,01 – 0,02 мм в поперечнике) акцессорные минералы. Они образуют механические включения в породообразующих минералах (рис. 1.1).

Рис. 1.1 Включение акцессорных апатита (1) и циркона (2) в зерне полевого шпата. Прозрачный шлиф, увеличение 160 ´

Содержание акцессориев весьма незначительное, но концентрация рассеянных элементов в них настолько высокая, что эти элементы образуют самостоятельные соединения. В кристаллических породах в качестве акцессориев присутствуют циркон Zr, рутил, реже анатаз и брукит, имеющие однотипный состав ТiO 2 , апатит Са 5 [РО 4 ] 3 F, магнетит Fe 2+ Fe 2 3+ O 4 , ильменит FeTiO 3 , монацит СеРО 4 , ксенотим YPO 4 , касситерит SnO 2 , хромит ЕеСг 2 О 4 и другие сорных апатита (7) и минералы группы шпинели, минералы группы колумбита (Fe, Mg) (Nb, Та) 2 О 6 и др. Содержание акцессориев в некоторых породообразующих минералах, особенно в слюдах, довольно заметно.

В некоторых минералах, преимущественно среди сульфидов и им подобных соединений, широко распространены так называемые структуры распада твердого раствора – мелкие выделения минерала-примеси в веществе минерала-хозяина. Их примером могут служить «эмульсионная вкрапленность» халькопирита CuFeS 2 и станина Cu 2 FeSnS 4 в сфалерите ZnS, тонкие пластинчатые выделения ильменита FeTiO 3 в магнетите Fe 2+ Fe 2 3+ O 4 , мелкие выделения минералов серебра в галените PbS. В результате в сульфиде свинца присутствует ощутимая примесь серебра, в сульфиде меди – примесь олова, в магнетите – примесь титана.

Применение поляризационного микроскопа и прозрачных шлифов позволило обнаружить в минералах не только твердые включения, но и микро-пустоты, заполненные остатками растворов, из которых осуществлялась кристаллизация (рис. 1.2).

Рис. 1.2. Микрополости в кварце: 1 – кристалл сильвина; 2 – кристалл галита; 3 – пузырек газа; 4 – жидкая фаза. Прозрачный шлиф, увеличение 900 ´


Это явление, впервые специально рассмотренное в 1858 г. основателем оптической петрографии Г. Сорби, к настоящему времени всесторонне изучено. Микрополости в минералах обычно содержат жидкую и газовую фазы, иногда к ним добавляются мелкие кристаллы. Проблема жидких включений была основательно проанализирована У. Ньюхаузом, который отметил присутствие в жидкостях тяжелых металлов (до нескольких процентов).

Некоторая часть примеси рассеянных элементов, легко экстрагируемая из тонко растертых мономинеральных проб, связана именно с жидкими включениями. Н.П. Ермаков (1972), изучив микровключения из флюорита, обнаружил в них n×10 -1 % цинка, марганца, n×10 -2% бария, хрома, меди, никеля и свинца, n× 10 -3% титана. В дальнейшем в жидких включениях были обнаружены и другие рассеянные элементы.

Вместе с тем тщательный анализ мономинеральных проб и использование электронного зондирования показали, что все без исключения породообразующие минералы содержат рассеянные элементы в настолько высокодисперсной форме, что они не могут быть обнаружены не только при помощи оптической, но и электронной микроскопии. В этом случае имеет место рассеяние элементов на уровне ионов и молекул. Формы такого рассеяния не ограничиваются рассмотренными ранее явлениями изоморфизма. Известны многочисленные случаи присутствия химических элементов в минералах, не имеющих никакой связи с изоморфизмом.

Результаты многих тысяч анализов, выполненных в разных странах за последние 50 лет, позволяют утверждать, что все породообразующие минералы являются носителями рассеянных элементов. Именно в них сосредоточена основная масса рассеянных элементов, содержащаяся в земной коре. Зная содержание минералов-носителей и концентрацию в них рассеянных элементов, можно рассчитать баланс внутри конкретной горной породы.

При изучении гранитов Тянь-Шаня было обнаружено, что в кварце, несмотря на ничтожную концентрацию свинца, заключено более 5% всей массы этого металла, содержащегося в породе (табл. 1.2).

Таблица 1.2. Распределение свинца в минералах, слагающих граниты хребта Джумгол

Невозможно предположить изоморфное вхождение свинца, цинка или другого металла в структуру кварца, образованную комбинацией ионов кремния и кислорода. Между тем кварц служит носителем многих рассеянных элементов. Разработан особый метод оценки потенциальной рудоносности горных пород и жил по содержанию в кварце лития, рубидия, бора.

При экспериментальном изучении прочности закрепления рассеянных металлов в породообразующих минералах было обнаружено, что при обработке тонко измельченной минеральной массы последовательными порциями слабых кислотно-щелочных растворителей значительная часть металлов легко извлекается при первой же экстракции, причем это извлечение не сопровождается разрушением кристаллохимической структуры минералов. При дальнейших обработках количество экстрагируемых металлов резко сокращается или прекращается совсем. Это позволило высказать предположение, что часть рассеянных элементов не входит в собственно кристаллохимическую структуру, а приурочена к дефектам реальных кристаллов. Дефекты представляют собой разного рода трещины, причем настолько мелкие, что не обнаруживаются оптическим микроскопом. Легкость извлечения рассеянных металлов объясняется тем, что они связаны с поверхностью минерала-носителя сорбционными силами. В породообразующих силикатах эта форма нахождения рассеянных металлов составляет 10 – 20% от всей массы рассеянных металлов. В частности, непрочно связанная форма свинца в гранитах Тянь-Шаня составляет от 12 до 18% всей массы рассеянного элемента.

Можно выделить следующие формы нахождения рассеянных элементов в кристаллическом веществе земной коры:

I. Микроминералогические формы:

1. Элементы, входящие в акцессорные минералы.

2. Элементы, содержащиеся в микроскопических выделениях в результате распада твердых растворов.

3. Элементы, находящиеся во включениях остаточных растворов. П. Неминералогические формы:

4. Элементы, сорбированные поверхностью дефектов реальных кристаллов.

5. Элементы, входящие в структуру минерала-носителя по законам изоморфизма.

6. Элементы, находящиеся в структуре минерала-носителя в неупорядоченном состоянии.

Сочетание рассмотренных форм нахождения рассеянных элементов сильно меняется в зависимости от многих факторов. Соответственно меняется и суммарное содержание рассеянного элемента в разных участках земной коры.

3. Особенности распределения химических элементов в земной коре

Варьирование содержания элемента в разных пробах обусловлено многими независимыми причинами. Когда распределение величины определяется достаточно большим числом примерно равнодействующих и взаимно независимых причин, то оно подчиняется так называемому нормальному закону Гаусса. Его графическим выражением является кривая с симметричными ветвями по обе стороны максимальной ординаты. При нормальном распределении наиболее вероятным значением служит среднее арифметическое х, которое совпадает с наиболее часто встречающимися значениями – модой. Растянутость симметричной кривой по оси абсцисс, т.е. разброс значений в большую и меньшую стороны от моды, характеризуется средним квадратичным отклонением а.

Нормальное распределение может также проявляться не для самой величины, а для ее логарифма (логарифмически нормальный, или логнормальный, закон распределения). В этом случае мода совпадает со средним геометрическим, а разброс значений характеризуется логарифмом а.

В 1940 г. Н.К. Разумовский эмпирическим путем обнаружил, что содержание металлов в рудах соответствует логарифмически нормальному распределению. Л.X. Арене в 1954 г., обработав обширный материал, независимо от Разумовского установил, что распределение рассеянных элементов в магматических породах аппроксимируется логарифмически нормальным законом. Многочисленные факты указывают на то, что распределение элементов с высокими кларками обычно подчиняется нормальному закону, а рассеянных – логнормальному. Это еще раз подтверждает принципиальное различие главных и рассеянных элементов.

С высокой вариабельностью низкокларковых элементов связана их способность к высокой степени концентрации. Максимальная степень концентрации главных элементов составляет 10 – 20 раз по отношению к их кларку, а для рассеянных элементов – в сотни и тысячи раз больше. Например, в рудах промышленных месторождений степень концентрации свинца, никеля, олова, хрома составляет 1000×п.

Говоря об огромных массах тяжелых металлов, сосредоточенных в месторождениях руд, следует помнить, что эти массы – ничтожная часть общего количества металлов, рассеянных в земной коре. В частности, общемировые запасы руд цинка, меди, свинца, никеля составляют всего лишь тысячные доли процента от масс этих металлов, рассеянных в верхнем километровом слое земной коры континентов.

Залежи руд связаны с окружающими горными породами постепенными переходами. Рудные тела находятся как бы в чехле постепенно убывающей концентрации металлов. Такие образования получили название ореолов рассеяния Первичные, сингенетичные рудные ореолы возникают одновременно с рудными телами и в результате одних и тех же процессов. Они имеют разнообразную конфигурацию, зависящую от геологического строения, состава вмещающих пород и условий рудообразования.

В рудах наряду с одним или несколькими главными рудообразующими элементами присутствуют сопутствующие элементы, концентрация которых также повышена, но не настолько, как главных. Элементы-спутники часто образуют изоморфные замещения главных. Например, в цинковых рудах постоянно содержится кадмий, в меньшем количестве – индий, галлий, германий. В медно-никелевых рудах присутствует значительная примесь кобальта, в меньшем количестве – селена и теллура. Все сопутствующие элементы также рассеиваются вокруг рудных тел. Обладая неодинаковой геохимической подвижностью, они образуют переходные зоны разной протяженности. В итоге состав и строение ореолов рассеяния очень сложны.

Среднее содержание химического элемента представляет собой норму – геохимический фон – для данного типа пород в определенном районе. На геохимическом фоне выделяются геохимические аномалии – участки горных пород с повышенной концентрацией рассеянных элементов. Если они связаны с залежами руд, то это ореолы рассеяния. Если же концентрации металлов не достигают кондиции руды, то такие аномалии называют ложными. Используя статистическую обработку массовых аналитических данных, можно обнаружить закономерные изменения величины геохимического фона в пространстве и выявить геохимические провинции. В пределах провинций горные породы одного типа обладают выдержанными статистическими параметрами, в первую очередь значениями среднего содержания одного или нескольких рассеянных элементов. Среднее содержание некоторых элементов в однотипных породах разных геохимических провинций может сильно различаться (в несколько раз). При этом химический состав этих пород, определяемый содержанием главных элементов, остается одинаковым или имеет очень слабые отличия. Например, в гранитах разных провинций, имеющих практически одинаковое количество кремния, алюминия, железа, калия, содержание олова, свинца, молибдена, урана может различаться в 2–3 раза.

Изложенный материал свидетельствует о неравномерности распределения рассеянных элементов в земной коре. Поэтому наряду с определением кларков, т.е. величины средней концентрации элементов в земной коре в целом, необходимо учитывать их способность концентрироваться или рассеиваться в различных объектах – разных типах горных пород или в однотипных породах, но находящихся в разных геохимических провинциях, в рудах и др. Чтобы количественно оценить неоднородность химических элементов в земной коре, В.И. Вернадский ввел специальный показатель – кларк концентрации К к. Его числовое значение характеризует отклонение содержания элемента в данном объеме от кларка:

К К = А/К,

где А – содержание химического элемента в горной породе, руде, минерале и др.;

К – кларк этого элемента в земной коре. Если кларк концентрации больше единицы, это указывает на обогащение элементом, если меньше – означает снижение его содержания по сравнению с данными для земной коры в целом.

Изменение концентрации химических элементов в пространстве, отклонение от глобальной или местной геохимической нор МЬ1 __ не отдельные случаи, а характерная черта геохимической структуры земной коры. Это имеет очень важное значение для состава фотосинтезирующих организмов суши, которые образуют основную часть массы живого вещества Земли.


Литература

1. Алексеенко В.А. Экологическая геохимия. – М.: Логос, 2000. – 627 с.

2. Арене Л. X. Распределение элементов в изверженных породах // Химия земной коры. – М.: Наука, 1964. – Т. 2. – С. 293–300.

3. Вернадский В.И. Очерки геохимии // Избр. соч.: В 5 т. – М.: Изд-во АН СССР, 1954. – Т. 1. – С. 7–391.

4. Войткевич Г.В., Мирошников А.Е., Повареных А.С., Прохоров В.Г. Краткий справочник по геохимии. – М.: Недра, 1977. – 183 с.

5. Гольдшмит В.М. Принципы распределения химических элементов в минералах и горных породах // Сб. ст. по геохимии редких элементов. – М. – Л.: ГОНТИ НКТП СССР, 1930. – С. 215–242.

6. Добровольский В.В. География микроэлементов. Глобальное рассеяние. – М.: Мысль, 1983. – 269 с.

7. ПерельманА.И. Геохимия. – М.: Высш. шк., 1989. – 528 с.

8. Ронов А.Б., Ярошевский А.А. Новая модель химического состава земной коры // Геохимия. – 1976. – №12. – С. 1763–1795.

Химический состав Земли (рис. 1) схож с составом других планет земной группы, например Венеры или Марса.

В целом преобладают такие элементы, как железо, кислород, кремний, магний, никель. Содержание легких элементов невелико. Средняя плотность вещества Земли 5,5 г/см3.

О внутреннем строении Земли достоверных данных весьма мало. Земля состоит из земной коры, мантии и ядра.

Рис. 1. Химический состав Земли

Рис. 2. Внутреннее строение Земли

Ядро расположено в центре Земли, его радиус составляет около 3,5 тыс. км. Температура ядра достигает 10 000 К, т. е. она выше, чем температура внешних слоев Солнца, а его плотность составляет 13 г/см3 (сравните: вода - 1 г/см3). Ядро предположительно состоит из сплавов железа и никеля.

Внешнее ядро Земли имеет большую мощность, чем внутреннее (радиус 2200 км) и находится в жидком (расплавленном) состоянии. Внутреннее ядро подвержено колоссальному давлению. Вещества, слагающие его, находятся в твердом состоянии.

Мантия - геосфера Земли, которая окружает ядро и составляет 83 % от объема нашей планеты. Нижняя ее граница располагается на глубине 2900 км. Мантия разделяется на менее плотную и пластичную верхнюю часть (800-900 км), из которой образуется магма (в переводе с греческого означает «густая мазь»; это расплавленное вещество земных недр - смесь химических соединений и элементов, в том числе газов, в особом полужидком состоянии); и кристаллическую нижнюю, тол- шиной около 2000 км.

Земная кора - внешняя оболочка литосферы. Ее плотность примерно в два раза меньше, чем средняя плотность Земли, - 3 г/см3.

От мантии земную кору отделяет граница Мохоровичича (ее часто называют границей Мохо), характеризующаяся резким нарастанием скоростей сейсмических волн. Она была установлена в 1909 г. хорватским ученым Андреем Мохоровичичем (1857- 1936).

Поскольку процессы, происходящие в самой верхней части мантии, влияют на движения вещества в земной коре, их объединяют под общим названием литосфера (каменная оболочка). Мощность литосферы колеблется от 50 до 200 км.

Ниже литосферы располагается астеносфера - менее твердая и менее вязкая, но более пластичная оболочка с температурой 1200 °С. Она может пересекать границу Мохо, внедряясь в земную кору. Астеносфера - это источник вулканизма. В ней находятся очаги расплавленной магмы, которая внедряется в земную кору или изливается на земную поверхность.

2. Литосфера и её строение

Литосфера - это твердая оболочка Земли, состоящая из земной коры и верхней части мантии (от греч. lithos - камень и sphaira - шар). Известно, что существует тесная связь между литосферой и мантией Земли. Мощность литосферы составляет в среднем от 70 до 250 км.


Литосфера – это внешняя оболочка «твёрдой» Земли.

Земная кора и верхняя (твердая) часть мантии образуют литосферу. Она представляет собой «шар» из твёрдого вещества радиусом около 6400км. Земная кора - внешняя оболочка литосферы. Состоит из осадочного, гранитного и базальтового слоев. Отличают океаническую и материковую земную кору. В составе первой отсутствует гранитный слой. Максимальная толщина земной коры около 70 км - под горными системами, 30- 40 км - под равнинами, наиболее тонкая земная кора - под океанами, всего 5- 10 км.
Остальную часть мы называем внутренней литосферой, которая включает также и центральную часть, называемую ядром. О внутренних слоях литосферы нам почти ничего не известно, хотя на их долю приходится почти 99,5% всей массы Земли. Их можно изучать только с помощью сейсмических исследований.

Мощность литосферы изменяется от 50 км (под океанами) до 100 км (под материками) . Cтроение литосферы представлено её крупными блоками – литосферными плитами, отделёнными друг от друга глубинными тектоническими разломами. Литосферные плиты движутся в горизонтальном направлении со средней скоростью 5-10 см в год.

Земля входит в состав Солнечной системы, находится на дистанции 149,8 миллионов километров от Солнца и является пятой по размеру среди других планет.

Немного о планете Земля

Скорость обращения небесного тела вокруг Солнца составляет 29,765 км/с. Полный оборот она делает за 365.24 солнечных суток.

Наша планета Земля обладает одним спутником. Это Луна. Она находится на орбите нашей планеты на дистанции 384 400 км. У Марса насчитывается два спутника, а у Юпитера - шестьдесят семь. Средний радиус нашей планеты составляет 6371 км, при этом она похожа на эллипсоид, немного сплюснутый у полюсов и вытянутый по экватору.

Масса и плотность Земли

Её масса составляет 5,98*1024 кг, а средняя плотность Земли равна 5.52 г/см 3 . В то же время этот показатель у земной коры находится в пределах 2.71 г/см 3 . Из этого следует, что плотность планеты Земля значительно увеличивается по направлению к глубине. Это связано с особенностью ее строения.

Впервые средняя плотность Земли была определена И. Ньютоном, который вычислил ее в размере 5-6 г/см 3 . Ее химический состав имеет сходство с планетами земной группы, такими как Венера и Марс и частично Меркурий. Состав Земли: железо - 32%, кислород - 30%, кремний - 15%, магний - 14%, сера - 3%, никель - 2%, кальций - 1,6% и алюминий - 1,5%. На остававшиеся элементы в сумме приходится около 1,2%.

Наша планета - голубая путешественница в космосе

Нахождение Земли недалеко от Солнца влияет на наличие тех или других химических веществ как в жидком, так и газообразном состоянии. Благодаря этому разнообразен, образовалась атмосфера, гидросфера и литосфера. Атмосфера в основном состоит из смеси газов: азота и кислорода 78% и 21% соответственно. А также углекислого газа - 1,6% и ничтожного количества инертных газов, таких как гелий, неон, ксенон и других.

Гидросфера нашей планеты состоит из воды и занимает 3/4 её поверхности. Земля — единственная известная на сегодня планета Солнечной системы, которая обладает гидросферой. Вода сыграла решающую роль в процессе возникновения жизни на Земле. Благодаря ее циркуляции и высокой теплоёмкости гидросфера уравновешивает климатические условия на разных широтах и формирует климат на планете. Её представляют океаны, реки и Твёрдая часть нашей планеты состоит из осадочных образований, гранитного и базальтового слоя.

и её структура

Земля, как и остальные планеты земной группы, обладает слоистым внутренним строением. В её центре находится ядро.

Далее следует мантия, которая занимает значительную часть объёма планеты, а затем Между собой образовавшиеся слои сильно отличаются по своему составу. За срок существования нашей планеты, свыше 4,5 миллиардов лет, более тяжёлые породы и элементы под воздействием силы тяжести проникали все дальше и дальше в центр Земли. Другие элементы, более лёгкие, оставались ближе к её поверхности.

Сложность и недосягаемость изучения недр

Человеку очень сложно проникнуть вглубь Земли. Одна из самых глубоких скважин пробурена на Кольском полуострове. Её глубина достигает 12 километров.

При этом расстояние от поверхности до центра планеты составляет более 6300 километров.

Используем косвенные инструменты исследования

Из-за этого недра нашей планеты, размещённые на значительной глубине, анализируют по результатам сейсмической разведки. Каждый час в разных точках Земли отмечается примерно десять колебаний ее поверхности. На основании полученных данных тысячи сейсмических станций проводят исследование распространения волн при землетрясении. Эти колебания распространяются точно так же, как круги на воде от брошенного объекта. Когда волна проникает в более уплотнённый слой, её скорость резко изменяется. Используя полученные данные, учёные смогли определить границы внутренних оболочек нашей планеты. В строении Земли различают три основных слоя.

Земная кора и её свойства

Верхняя - это земная кора. Её толщина может варьироваться от 5 километров в океанических областях до 70 километров в горных районах материковой части. По отношению ко всей планете эта оболочка не толще яичной скорлупы, а под ней бушует подземный огонь. Отголоски глубинных процессов, происходящих в недрах Земли, которые мы наблюдаем в виде извержений вулканов и землетрясений, вызывают большие разрушения.

Земная кора - это единственный слой, который доступен людям для жизни и полноценных исследований. Структура земной коры под континентами и океанами различна.

Континентальная земная кора занимает гораздо меньшую но имеет более сложное строение. Она содержит под осадочным слоем внешний гранитный и нижний базальтовый слои. В континентальной коре встречаются более давние породы, возраст которых почти два миллиарда лет.

Более тонкая, всего около пяти километров, и содержит два слоя: нижний базальтовый и верхний осадочный. Возраст океанических пород не превышает 150 миллионов лет. В этом слое может существовать жизнь.

Мантия и что мы о ней знаем

Под корой залегает слой, именуемый мантией. Граница между ею и корой довольно резко обозначена. Она названа слоем Мохоровича, и её можно обнаружить на глубине около сорока километров. Граница Мохоровича состоит в основном из базальтов и силикатов, находящихся в твёрдом состоянии. Исключение составляют некие «лавовые карманы», которые находятся в жидком виде.

Толщина мантии - почти три тысячи километров. Такие же слои обнаружены и на других планетах. На этой границе происходит чёткое возрастание сейсмических скоростей от 7,81 до 8,22 км/с. Мантию Земли подразделяют на верхнюю и нижнюю составляющие. Границей между данными геосферами служит слой Галицина, который находится на глубине около 670 км.

Как формировалось знание о мантии?

В начале 20-го века интенсивно обсуждалась граница Мохоровича. Некоторые исследователи считали, что именно там происходит метаморфический процесс, при котором формируются породы с высокой плотностью. Другие ученые объясняли резкое увеличение скорости движения сейсмических волн сменой содержания состава пород от относительно лёгких к более тяжёлым типам.

Сейчас эта точка зрения считается основной в понимании и методах исследования процессов, происходящих внутри планеты. Сама непосредственно недоступна для прямых исследований по причине глубокого залегания, и она не выходит на поверхность.

Поэтому основная информация получена геохимическими и геофизическими способами. В целом реконструкция через имеющиеся источники - весьма сложная задача.
Мантия, принимающая излучение из центра, разогрета от 800 градусов наверху до 2000 градусов около ядра. Предполагается, собственно, что вещество мантии пребывает в беспрерывном движении.

Чему равна плотность Земли в области мантии?

Плотность Земли в пределах мантии достигает порядка 5,9 г/см 3 . Давление растёт с увеличением глубины и может достигать 1,6 млн. атмосфер. В вопросе определения температуры в мантии мнения учёных не однозначны и достаточно противоречивы, 1500-10000 градусов Цельсия. Таковы сложившиеся мнения в учёных кругах.

Чем ближе к центру, тем горячее

В центре Земли размещено ядро. Его верхняя часть находится на глубине 2900 километров от поверхности (внешнее ядро) и составляет около 30% от общей массы планеты. Этот слой обладает свойствами тягучей жидкости и электропроводностью. Содержит в себе около 12% серы и 88% железа. На границе ядра и мантии резко возрастает плотность Земли и достигает порядка 9,5 г/см 3 . На глубине приблизительно 5100 км распознают его внутреннюю часть, радиус которой составляет около 1260 километров, а масса - 1,7% от общей массы планеты.

Давление в центре столь огромно, что железо и никель, которые должны быть жидкими, пребывают в твёрдом состоянии. По мнению научных исследований, центр Земли является местом со сверхэкстремальными условиями с давлением в 3,5 миллиона атмосфер и температурой выше 6000 градусов.

В связи с этим железоникелевый сплав не переходит в жидкое состояние, несмотря на то что температура плавления подобных металлов равна 1450-1500 градусов Цельсия. Из-за гигантского давления в центре масса и плотность Земли достаточно огромны. Один кубический дециметр вещества весит примерно двенадцать с половиной килограмм. Это уникальное и единственное место, где плотность планеты значительно выше, чем в любом другом её слое.

Раскрыть все механизмы взаимодействия внутри Земли было бы не только интересно, но и полезно. Нам бы стало понятно образование различных полезных ископаемых и их местонахождение. Возможно, полноценно стал бы понятен механизм возникновения землетрясений, что дало бы возможность точно их предупреждать. На сегодня они непредсказуемы и приносят много жертв и разрушений. Точные знания о конвекции потоков и их взаимодействии с литосферой, возможно, прольют свет на эту проблему. Поэтому будущим учёным предстоит долгая, интересная и полезная работа для всего человечества.