Проблема построения современной химической картины мира. Современная химическая картина мира

Слайд 2

вопросы

1. Химия как наука. 2. Алхимия как предыстория химии. 3. Эволюция химической науки. 4. Идеи Д. И. Менделеева и А. М. Бутлерова. 5. Антропогенный химизм и его влияние на среду обитания.

Слайд 3

от египетского слова «хеми», что означало Египет, а также «черный». Историки науки переводят этот термин как «египетское искусство». химия означает искусство производить необходимые вещества, в том числе и искусство превращать обыкновенные металлы в золото и серебро или их сплавы

Слайд 4

слово «химия» произошло от греческого термина «химос», который можно перевести как «сок растений». «химия» означает «искусство получения соков», но сок, о котором идет речь, может быть и расплавленным металлом. Химия может означать «искусство металлургии».

Слайд 5

Химия - раздел естествознания, исследующий свойства вещества и их превращения

Основной проблемой химии является получение веществ с заданными свойствами. химия неорганическая органическая исследует свойства химических элементов и их простых соединений: щелочи, кислоты, соли. изучает сложные соединения на основе углерода - полимеры, в том числе, созданные человеком: газы, спирты, жиры, сахара

Слайд 6

Основные периоды развития химии

1. Период алхимии - с древности до XVI в. нашей эры. Характеризуется поисками философского камня, эликсира долголетия, алкагеста (универсального растворителя). 2. Период в течение XVI - XVIII веков. Созданы теории Парацельса, теории газов Бойля, Кавендиша и др., теория флогистона Г. Шталя и теория химических элементов Лавуазье. Совершенствовалась прикладная химия, связанная с развитием металлургии, производства стекла и фарфора, искусства перегонки жидкостей и т.д. К концу XVIII века произошло упрочение химии как науки, независимой от других естественных наук.

Слайд 7

3. Первые шестьдесят лет XIX века. Характеризуется возникновением и развитием атомной теории Дальтона, атомно-молекулярной теории Авогадро и формированием основных понятий химии: атом, молекула и др. 4. С 60-х годов XIX века до наших дней. Разработаны периодическая классификация элементов, теория ароматических соединений и стереохимия, электронная теория материи и т.д. Расширился диапазон составных частей химии, как неорганическая химия, органическая химия, физическая химия, фармацевтическая химия, химия пищевых продуктов, агрохимия, геохимия, биохимия и т.д.

Слайд 8

АЛХИМИЯ

«Алхимия» - это арабизированное греческое слово, которое понимается как «сок растений». 3 типа: греко-египетская, арабская, западно-европейская

Слайд 9

Родина алхимии - Египет.

Философская теория Эмпедокла о четырех элементах Земли (вода, воздух, земля, огонь). Согласно ей различные вещества на Земле различаются только по характеру сочетания этих элементов. Эти четыре элемента могут смешиваться в однородные вещества. Важнейшей проблемой алхимии считался поиск философского камня. Улучшили процесс очистки золота путем купеляции (нагревая богатую золотом руду со свинцом и селитрой). Выделение серебра путем сплавления руды со свинцом. Получила развитие металлургия обыкновенных металлов. Известен процесс получения ртути.

Слайд 10

АРАБСКАЯ АЛХИМИЯ

«хеми» в «аль-химия» Джабир ибн Хайям описал нашатырный спирт, технологию приготовления свинцовых белил, способ перегонки уксуса для получения уксусной кислоты; все семь основных металлов образуются из смеси ртути и серы. ж

Слайд 11

ЗАПАДНОЕВРОПЕЙСКАЯ АЛХИМИЯ

монах-доминиканец Альберт фон Больштедт (1193-1280) – Альберт Великий детально описал свойства мышьяка, высказывал мнение о том, что металлы состоят из ртути, серы, мышьяка и нашатыря.

Слайд 12

британский философ ХII в. – Роджер Бэкон (около 1214 - после 1294). возможный изобретатель пороха; писал о потухании веществ без доступа воздуха, писал о способности селитры взрываться с горящим углем.

Слайд 13

испанский врач Арнальдо де Виллановы (1240-1313) и РаймундЛуллия (1235-1313). попытки получить философский камень и золото (неудачно), изготовили бикарбонат калия. итальянский алхимик кардинал Джованни Фиданца (1121-1274) – Бонавентура получил раствор нашатыря в азотной кислоте самый видный алхимиков был испанцем, жил в XIV веке - Гебера. описал серную кислоту, описал, как образуется азотная кислота, отметил свойство царской водки воздействовать на золото, считавшееся до тех пор неподдающимся изменению.

Слайд 14

Василий Валентин (XIV в.) открыл серный эфир, соляную кислоту, многие соединения мышьяка и сурьмы, описал способы получения сурьмы и ее медицинское применение

Слайд 15

Теофраст фон Гогенгейм (Парацельс) (1493-1541) основатель ятрохимии – медицинской химии, достиг некоторого успеха в борьбе с сифилисом, одним из первых разрабатывал лекарственные средства для борьбы с умственными расстройствами, ему приписывают открытие эфира.

Посмотреть все слайды

Отсутствие в химии теоретических основ, позволяющих точно предсказывать и рассчитывать протекание химических реакций, не позволяло ставить её в ряд с науками, обосновывающими само бытие. Поэтому высказывание Д.И. Менделеева о химическом понимании мирового эфира не только не было востребовано в начале 20 века, но и оказалось незаслуженно полностью забыто на целое столетие. Связано ли это с тогдашним революционным переворотом в физике, который захватил и увлёк большинство умов в 20 веке в изучение квантовых представлений и теории относительности, сейчас уже не так важно. Жаль только, что выводы гениального учёного, к тому же признанного в то время, не пробудило качественно другие философско-методологические принципы, отличные от философских принципов, которые, кстати, в изобилии фигурировали в рассуждениях физиков.

Объяснение столь нежелательного забвения скорее всего связано с распространением редукционистских течений, вызванных возвеличением физики. Именно сведение химических процессов к совокупности физических как бы прямо указывало на ненужность химических воззрений при анализе первооснов бытия. Кстати, когда химики пытались защитить специфику своей науки доводами о статистическом характере химических взаимодействий в отличие большинства взаимодействий в физике, обусловленных динамическими законами, физики тут же указывали на статистическую физику, которая якобы более полно описывает подобные процессы.

Специфика химии терялась, хотя наличие строгой геометрии связей взаимодействующих частиц в химических процессах вносило в статистическое рассмотрение специфический для химии информационный аспект.

Анализ сущности информационно-фазового состояния материальных систем резко подчёркивает информационный характер химических взаимодействий. Вода как химическая среда, оказавшись первым примером информационно-фазового состояния материальных систем, соединила в себе два состояния: жидкое и информационно-фазовое именно по причине близости химических взаимодействий к информационным.

Вакуум как электромагнитная среда физического пространства, проявившая свойства информационно-фазового состояния, скорее всего, ближе к среде, в которой протекают процессы, по форме напоминающие химические. Поэтому химическое понимание мирового эфира Д.И. Менделеева становится чрезвычайно актуальным. Давно замеченное терминологическое совпадение при описании соответствующих процессов превращения частиц в химии и в физике элементарных частиц как реакций дополнительно подчёркивает роль химических представлений в физике.

Предполагаемая взаимосвязь между информационно-фазовыми состояниями водной среды и электромагнитной среды физического вакуума свидетельствует о сопутствующих химическим процессам изменениях в физическом вакууме, что, вероятно, и ощущал Д.И. Менделеев в своих экспериментах.

Следовательно, в вопросе о природе мирового эфира химия в каких-то моментах выступает даже определяющей по отношению к физическому воззрению.

Поэтому говорить о приоритете физических или химических представлений в выработке научной картины мира, вероятно, не стоит.

Химия – наука о веществах и их превращениях, которые сопровождаются изменением состава и строения вещества. Эти процессы осуществляются на границе микро- и макромира.

Как самостоятельная наука химия начинает развиваться с середины XVII века. Научному этапу развития химии предшествовал период алхимии. Это явление культуры связывается с попытками получить «совершенные» металлы – золото и серебро – из «несовершенных» металлов с помощью гипотетического вещества – «философского камня» или эликсира. Не смотря на очевидную невозможность осуществить это превращение, алхимия стимулировала развитие химических технологий (металлургия, стеклоделие, производство керамики, бумаги, спиртных напитков) и открытие способов получения новых химических веществ.

Научный этап развития химии принято делить на четыре периода, в каждом из которых формируется концептуальная система знаний:

а) учение о составе вещества (сер. 17 – сер. 18 вв.) – изучает зависимость свойств веществ от химического состава (состава молекулы);

б) учение о структуре вещества (структурная химия) (сер. 18 – сер. 20 вв.) – изучает зависимость свойств веществ от строения молекулы;

в) учение о химических процессах (сер. 20 в.) – изучаются механизмы протекания химических реакций, а также процессы их ускорения (катализ);

г) эволюционная химия (последние 25-30 лет) - изучает химические процессы в живой природе, процессы самоорганизации химических систем.

3.1.1 Учение о составе вещества

В основе классической химии лежит концепция атомизма, которая была сформулирована еще в античной философии Левкипом, Демокритом и Эпикуром. На основе атомизма в середине 19 века были сформулированы основные положения атомно-молекулярного учения.

    Вещества состоят из молекул. Молекула - наименьшая частица вещества, обладающая его химическими свойствами. Молекулы отличаются между собой составом, размерами, физическими и химическими свойствами.

    Молекулы находятся в непрерывном движении; между ними существует взаимное притяжение и отталкивание. Скорость движения молекул зависит от агрегатного состояния веществ.

    При физических явлениях состав молекул остается неизменным, при химических реакциях из одних молекул образуются другие.

    Молекулы состоят из атомов. Свойства атомов одного элемента отличаются от свойств атомов других элементов. Атомы характеризуются определенными размерами и массой. Масса атома, выраженная в атомных единицах массы (а.е.м.) называется относительной атомной массой.

1 а.е.м. = 1,667 10 -27 кг.

Атомно-молекулярное учение позволило объяснить основные понятия и законы химии. Понятие «химический элемент» предложил Р.Бойль, обозначение химических элементов символами предложил в 1814 г. Й. Берцелиус. Химический элемент – определенный вид атомов с одинаковым зарядом ядра. Заряд ядра численно равен порядковому номеру элемента в периодической системе. В настоящее время известно 118 химических элементов, из них 94 обнаружены в природе, остальные 24 получены искусственно в результате ядерных реакций.

Атом - наименьшая частица химического элемента, сохраняющая все его химические свойства. Химические свойства элемента определяются строением его атома. Отсюда следует определение атома, соответствующее современным представлениям: Атом - это электронейтральная частица, состоящая из положительно заряженного атомного ядра и отрицательно заряженных электронов.

Изотопы – атомы одного и того же химического элемента, имеющие разную массу и, соответственно, различное количество нейтронов в ядре. Изотопы могут быть стабильными, т.е. их ядра не подверженными самопроизвольному распаду, и радиоактивными, которые способны превращаться в атомы других элементов до тех пор, пока не образуется стабильный изотоп (Уран-238 Свинец-206).

Аллотропия – способность элементов существовать в виде различных простых веществ, отличающихся физическими и химическими свойствами. Аллотропия может быть результатом образования молекул с различным числом атомов (например, атомарный кислород O, молекулярный кислород O 2 и озон O 3) или образования различных кристаллических форм (например, графит и алмаз). В результате аллотропии из 118 элементов образуется около 400 простых веществ.

Молекула - это наименьшая частица данного вещества, обладающая его химическими свойствами. Понятие молекула ввел итальянский ученый А.Авогадро. В 1811 году он предложил молекулярную теорию строения вещества.

Химические свойства молекулы определяются ее составом и химическим строением. Размеры молекул определяются их массой и структурой и у больших молекул могут достигать 10 -5 см. В настоящее время известно свыше 18 млн. видов молекул разных веществ.

Химическая формула - это условная запись состава вещества с помощью химических знаков и индексов. Химическая формула показывает, атомы каких элементов и в каком отношении соединены между собой в молекуле.

Основные хи мические законы.

Закон сохранения массы (М.В.Ломоносов, А.Л.Лавуазье): масса веществ, вступивших в реакцию, равна массе веществ, образующихся в результате реакции. С точки зрения атомно-молекулярного учения в результате химических реакций атомы не исчезают и не возникают, а происходит их перегруппировка (химическое превращение). Поскольку число атомов до и после реакции остается неизменным, то их общая масса также изменяться не должна. Исходя из закона сохранения массы, можно составлять уравнения химических реакций и по ним производить расчеты. Этот закон является основой количественного химического анализа.

В начале 20 века формулировка закона сохранения массы подверглась пересмотру в связи с появлением теории относительности (см. п.2.4.1), согласно которой масса тела зависит от его скорости и, следовательно, характеризует не только количество материи, но и ее движение. Полученная телом энергия E связана с увеличением его массыm соотношениемE =m c 2 , где с - скорость света. Это соотношение не используется в химических реакциях, т.к. 1 кДж энергии соответствует изменению массы приблизительно на 10 -11 г и m практически не может быть измерено. Однако в ядерных реакциях, где изменение энергииЕ в миллионы раз больше, чем в химических реакциях,m следует учитывать.

Закон постоянства состава вещества :

Согласно закону постоянства состава, всякое химически чистое вещество имеет постоянный качественный и количественный состав независимо от способа его получения. Качественный и количественный состав вещества показывает химическая формула. Например, независимо от того, каким способом получено вещество вода (Н 2 О), оно имеет постоянный состав: два атома водорода и один атом кислорода.

Из закона постоянства состава следует, что при образовании сложного вещества элементы соединяются друг с другом в определенных массовых соотношениях.

В настоящее время установлено, что этот закон всегда выполним для соединений с молекулярной структурой. Состав же соединений с немолекулярной структурой (с атомной, ионной и металлической кристаллической решеткой) не является постоянным и зависит от условий получения.

Закон кратных отношений (Дж. Дальтон) - если два элемента образуют друг с другом несколько химических соединений, то массы элементов соотносятся между собой как небольшие целые числа.

Например: в оксидах азота N 2 O, N 2 O 3 , NO 2 (N 2 O 4), N 2 O 5 число атомов кислорода, приходящихся на два атома азота, относятся между собой как 1: 3: 4: 5.

Закон объемных отношений (Гей-Люссак )- объемы газов, вступающих в химические реакции, и объемы газов, образующихся в результате реакции, относятся между собой как небольшие целые числа. Следовательно, стехиометрические коэффициенты в уравнениях химических реакций для молекул газообразных веществ показывают, в каких объемных отношениях реагируют или получаются газообразные вещества. Например:

2CO + O 2
2CO
2

При окислении двух объемов оксида углерода (II) одним объемом кислорода образуется 2 объема углекислого газа, т.е. объем исходной реакционной смеси уменьшается на 1 объем.

Закон Авогадро - в равных объемах любых газов, взятых при одной и той же температуре и при одинаковом давлении, содержится одно и то же число молекул. Согласно этому закону:

    одно и то же число молекул различных газов при одинаковых условиях занимает одинаковые объемы;

    1моль любого идеального газа при нормальных условиях (0°C = 273°К, 1 атм = 101,3 кПа) занимает одинаковый объем 22,4 л.

Французский химик А.Л. Лавуазье впервые попытался систематизировать химические элементы в соответствии с их массой. Английский химик Дж.Дальтон ввел понятие атомная масса и явился создателем теории атомного строения. В 1804 году он предложил таблицу относительных атомных масс водорода, азота, углерода, серы и фосфора, приняв за единицу атомную массу водорода. В настоящее время атомная масса измеряется относительно 1/12 массы атома изотопа углерода.

Работу по изучению свойств атомов продолжил Д.И. Менделеев и в 1869 г. сформулировал периодический закон и разработал Периодическую систему химических элементов. Периодический закон был сформулирован в следующем виде: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов». В качестве системообразующего фактора Д.И.Менделеев использовал массу химического элемента. В Периодической системе Д.И. Менделеева насчитывалось 62 элемента.

Квантовая механика уточнила, что свойства химических элементов и их соединений определяются зарядом атомного ядра. Современная формулировка периодического закона химических элементов: свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома и определяются периодически повторяющимися однотипными электронными конфигурациями их атомов.

Реакционная способность атома химического элемента определяется количеством электронов на внешней оболочке атома.

Валентность – свойства атомов одного элемента образовывать определенное число связей с атомами других элементов. Осуществляют химические связи между атомами электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно. Их назвали валентными электронами. Определить валентность (число валентных электронов) можно по таблице Д.И.Менделеева, зная номер группы, в которой находится химический элемент.

Электроотрицательность – свойство атома в соединении притягивать к себе валентные электроны. Чем сильнее атом оттягивает к себе электроны, тем больше его электроотрицательность. Степень окисления - условный заряд, который образуется на атоме, если учесть, что электрон при образовании связи переходит полностью к более электроотрицательному атому. Максимальная степень окисления элемента определяется номером группы в таблице Менделеева.

Атомы в молекулах связаны между собой химическими связями, которые образуются за счет перераспределения валентных электронов между атомами. При образовании химической связи атомы стремятся приобрести устойчивую (завершенную) внешнюю электронную оболочку. Химическая связь – вид фундаментального электромагнитного взаимодействия. Образование химической связи происходит за счет притяжения положительных и отрицательных зарядов, которые образуются на атоме при потере или смещении его электрона со стационарной орбиты. В зависимости от характера взаимодействия атомов различают ковалентную, ионную, металлическую и водородную химические связи.

Ковалентная связь осуществляется за счет образования общих электронных пар между двумя атомами. Она может быть полярной и неполярной. Ионная связь представляет собой электростатическое притяжение между ионами, которые образуются за счет полного смещения электронной пары к одному из атомов. Металлическая связь - это связь между положительными ионами металлов посредством общего электронного облака («электронного газа»).

Кроме внутримолекулярных связей образуются и межмолекулярные связи. Межмолекулярные взаимодействия - взаимодействия молекул между собой, не приводящие к разрыву или образованию внутримолекулярных химических связей. От межмолекулярных взаимодействий зависят агрегатное состояние вещества, структурные, термодинамические, теплофизические и другие свойства веществ. Примером межмолекулярной связи является водородная связь.

Водородная связь - межмолекулярная связь, образованная за счет притяжения более электроотрицательного атома (F, O, N), и атома водорода с частичным положительным зарядом. Например, водородная связь реализуется между молекулами воды, спирта, органических кислот. Она оказывает влияние на температуру кипения вещества.

Водородная связь может образоваться и внутри молекул. Например, внутримолекулярные водородные связи существуют в молекулах нуклеиновых кислот, белков, полипептидов и др. и определяют структуру этих макромолекул

Современная химическая картина мира


1. Предмет познания и важнейшие особенности химический науки


1 Специфика химии как науки


Для человека одной из важнейших естественных наук является химия - наука о составе, внутреннем строении и превращении вещества, а также о механизмах этих превращений.

«Химия - наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения». Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д.

Химия всегда была нужна человечеству для того, чтобы получать из природных веществ материалы со свойствами, необходимыми для повседневной жизни и производства. Получение таких веществ - производственная задача, и, чтобы ее реализовать, надо уметь осуществлять качественные превращения вещества, т. е. из одних веществ получать другие. Чтобы этого добиться, химия должна справиться с теоретической проблемой генезиса (происхождения) свойств вещества.

Таким образом, основанием химии выступает двуединая проблема - получение веществ с заданными свойствами (на достижение ее направлена производственная деятельность человека) и выявление способов управления свойствами вещества (на реализацию этой задачи направлена научно-исследовательская работа ученых). Эта же проблема является одновременно и системообразующим началом химии.


2 Важнейшие особенности современной химии


В химии, прежде всего в физической химии, появляются многочисленные самостоятельные научные дисциплины (химическая термодинамика, химическая кинетика, электрохимия, термохимия, радиационная химия, фотохимия, плазмохимия, лазерная химия).

Химия активно интегрируется с остальными науками, результатом чего было появление биохимии, молекулярной биологии, космохимии, геохимии, биогеохимии. Первые изучают химические процессы в живых организмах, геохимия - закономерности поведения химических элементов в земной коре.

Биогеохимия - это наука о процессах перемещения, распределения, рассеяния и концентрации химических элементов в биосфере при участии организмов. Основоположником биогеохимии является В. И. Вернадский.

Космохимия изучает химический состав вещества во Вселенной, его распространенность и распределение по отдельным космическим телам.

В химии появляются принципиально новые методы исследования (рентгеновский структурный анализ, масс-спектроскопия, радиоспектроскопия и др.)?

Химия способствовала интенсивному развитию некоторых направлений человеческой деятельности. Например, хирургии химия дала три главных средства, благодаря которым современные операции стали безболезненными и вообще возможными:

) введение в практику эфирного наркоза, а затем и других наркотических веществ;

) использование антисептических средств для предупреждения инфекции;

) получение новых, не имеющихся в природе аллопластических материалов-полимеров.

В химии весьма отчетливо проявляется неравноценность отдельных химических элементов. Подавляющее большинство химических соединений (96% из более 8,5 тыс. известных в настоящее время) - это органические соединения. В их основе лежат 18 элементов (наибольшее распространение имеют всего 6 из них).

Это происходит в силу того, что, во-первых, химические связи прочны (энергоемки) и, во-вторых, они еще и лабильны. Углерод как никакой другой элемент отвечает всем этим требованиям энергоемкости и лабильности связей. Он совмещает в себе химические противоположности, реализуя их единство.

Однако подчеркнем, что материальная основа жизни не сводится ни к каким, даже самым сложным, химическим образованиям. Она не просто агрегат определенного химического состава, но одновременно и структура, имеющая функции и осуществляющая процессы. Поэтому невозможно дать жизни только функциональное определение.

В последнее время химия все чаще предпринимает штурм соседних с нею уровней структурной организации природы. Например, химия все более и более вторгается в биологию, пытаясь объяснить основы жизни.

В развитии химии происходит не смена, а строго закономерное, последовательное появление концептуальных систем. При этом вновь появляющаяся система опирается на предыдущую и включает ее в себя в преобразованном виде. Таким образом, появляется система химии - единая целостность всех химических знаний, которые появляются и существуют не отдельно друг от друга, а в тесной взаимосвязи, дополняют друг друга и объединяются в концептуальные системы знаний, которые находятся между собой в отношениях иерархии.


2. Концептуальные системы химии


1 Понятие о химическом элементе


Концепция химического элемента появилась в химии в результате стремления человека обнаружить первоэлемент природы. Р. Бойль положил начало современному представлению о химическом элементе как о простом теле, пределе химического разложения вещества, переходящем без изменения из состава одного сложного тела в другое. Но еще целый век после этого химики делали ошибки в выделении химических элементов: сформулировав понятие химического элемента, ученые еще не знали ни одного из них.

Химические знания до определенного времени накапливались эмпирически, пока не назрела необходимость в их классификации и систематизации, т.е. в теоретическом обобщении. Основоположником системного освоения химических знаний явился Д. И. Менделеев. Попытки объединения химических элементов в группы предпринимались и ранее, однако не были найдены определяющие причины изменений свойств химических веществ. Д. И. Менделеев исходил из принципа, что любое точное знание представляет систему. Такой подход позволил ему в 1869 г. открыть периодический закон и разработать Периодическую систему химических элементов. В его системе основной характеристикой элементов являются атомные веса. Периодический закон Д. И. Менделеева сформулирован в следующем виде:

«Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен. В современном представлении этот периодический закон выглядит следующим образом:

«Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)».

Простейшим химическим элементом является водород (1H), состоящий из одного протона (ядра атома, имеющего положительный заряд) и одного электрона, имеющего отрицательный заряд.

Баланс взаимоотношений в атоме водорода, между протоном и электроном, можно описать тождеством

Если учесть отношение масс

то мы получим первое представление о балансе взаимоотношений между протонами и электронами в химических элементах.


2 Магическая матрица периодической системы химических элементов


Приводится следующая структура Периодической таблицы Д.И.Менделеева. Приводимая ниже информация приводится только для ознакомления и последующего осознания, что современные представления о тайнах Периодической системы химических элементов еще далеки от Истины.


Этот рисунок дает четкие представления о строго эволюционном формировании Периодической таблицы, в полном соответствии с законами сохранения симметрии. Все оболочки, подоболочки оказываются здесь строго взаимосвязаны и взаимообусловлены. Каждый химический элемент занимает в этом многомерном и многоуровневом "кубе" строго определенную эволюционную нишу.



В монографиях "Основы миологии", "Миология" были рассмотрены свойства магической матрицы, отражающей свойства подоболочек и оболочек Периодической системы химических элементов.



Из этой матрицы непосредственно видно

Количественный состав подоболочек и по горизонтали, и по вертикали матрицы одинаковы.

Группировки чисел, отражающие состав подоболочек Периодической системы характеризуют группировки этих подоболочек, разные по структуре. Но это так и должно быть, т.к. матрица является "отпечатком" пространственной структуры (монадного кристалла) на плоскость.

Главная диагональ матрицы является суммой всех чисел по горизонтали и по вертикали.

Эта магическая матрица химических элементов заслуживает самого пристального изучения.



Разве здесь не видно двойной спирали, в которой каждое число есть матрица строго определенной размерности?


Из этой матрицы, используя многомерные весы, можно непосредственно увидеть баланс взаимоотношений между подоболочками.



В этих матричных весах неукоснительно соблюдаются правила матричного умножения вектора-столбца на вектор-строку. Данные весы отражают баланс взаимоотношений между оболочками и подоболочками на восходящем участке эволюции химических элементов.

Здесь философским категориям восходящей и нисходящей спиралям нет места, ибо эти категории здесь имеют не философский, а чисто "химический" смысл. Теперь мы можем записать Периодическую систему в форме матричных тождеств, отражающих баланс взаимоотношений ее подоболочек и оболочек.


Нижеприведенный рисунок дает более полное представление о Периодической системе химических элементов.


Напомним, что здесь каждая клетка матрицы является двойственным числом, отражающим смысл взаимоотношения человека и общества. Этот рисунок более глубоко отражает сущность и собственно Периодической системы химических элементов, подтверждая справедливость высказывания: "В каждой самой элементарной частице содержится полная информация о всей вселенной".

Приведенные выше матричные тождества несут в себе самые сокровенные тайны не только химических элементов, но и вообще самых сокровенных тайн мироздания. Эти матричные тождества составлены в полном соответствии с законами сохранения симметрии.

Эта матрица несет в себе информацию не только о "проявленной" Периодической системе химических элементов, но и о ее "непроявленном", волновом "двойнике

Периодическая система химических элементов еще раз утверждает справедливость принципа корпускулярно-волнового дуализма, принцип единства "прерывного" и "непрерывного".

И сегодня наукой уже установлено, что у Периодической таблицы химических элементов (вещественных) есть двойник - Периодическая система химических элементов (волновых).


3 Современная картина химических знаний


Важнейшей особенностью основной проблемы химии является то, что она имеет всего четыре способа решения вопроса. Свойства вещества зависят от четырех факторов:

) от элементного и молекулярного состава вещества;

) от структуры молекул вещества;

) от термодинамических и кинетических условий, в которых вещество находится в процессе химической реакции;

) от уровня химической организации вещества.

Поскольку эти способы появлялись последовательно, мы можем в истории химии выделить четыре последовательно сменявших друг друга этапа ее развития. В то же время с каждым из названных способов решения основной проблемы химии связана своя концептуальная система знаний. Эти четыре концептуальных системы знания находятся в отношениях иерархии (субординации). В системе химии они являются подсистемами, так же как сама химия представляет собой подсистему всего естествознания в целом.

Современную картину химических знаний объясняют с позиций четырех концептуальных систем, которые схематично представлены на рис. I.



На рисунке показано последовательное появление новых, концепций в химической науке, которые опирались на предыдущие достижения, сохраняя в себе все необходимое для дальнейшего развития.

Даже невооруженным взглядом в этих этапах видна симметрия этапов.


В левой части тождества отношение отражает структурный аспект эволюции химии, правая часть тождества, напротив, отражает уже функциональный (процессы) аспект эволюции химии.


3.1 Первый уровень химического знания. Учение о составе вещества

Учение о составе веществ является первым уровнем химических знаний. До 20-30-х гг. XIX в. вся химия не выходила за пределы этого подхода. Но постепенно рамки состава (свойств) - стали тесны химии, и во второй половине XIX в. главенствующую роль в химии постепенно приобрело понятие «структура», ориентированное, что и отражено непосредственно в самом понятии, на структуру молекулы реагента.

Первый действенный способ решения проблемы происхождения свойств вещества появился в XVII в. в работах английского ученого Р. Бойля. Его исследования показали, что качества и свойства тел не имеют абсолютного характера и зависят от того, из каких химических элементов эти тела составлены. У Бойля наименьшими частичками вещества оказывались неосязаемые органами чувств мельчайшие частички (атомы), которые могли связываться друг с другом, образуя более крупные соединения - кластеры (по терминологии Бойля). В зависимости от объема и формы кластеров, от того, находились они в движении или покоились, зависели и свойства природных тел. Сегодня мы вместо термина «кластер» используем понятие «молекула».

В период с середины XVII в. до первой половины XIX в. учение о составе вещества представляло собой всю химию того времени. Оно существует и сегодня, представляя собой первую концептуальную систему химии. На этом уровне химического знания Ученые решали и решают три важнейшие проблемы: химического элемента, химического соединения и задачу создания новых материалов с вновь открытыми химическими элементами.

Химическим элементом называют все атомы, имеющие одинаковый заряд ядра. Особой разновидностью химических элементов являются изотопы, у которых ядра атомов отличаются числом нейтронов (поэтому у них разная атомная масса), но содержат одинаковое число протонов и поэтому занимают одно и тоже место в периодической системе элементов. Термин «изотоп» был введен в 1910 г. английским радиохимиком Ф. Содди. Различают стабильные (устойчивые) и нестабильные (радиоактивные) изотопы.

С момента открытия изотопов наибольший интерес вызвали радиоактивные изотопы, которые стали широко использоваться в атомной энергетике, приборостроении, медицине и т. д.

Первое научное определение химического элемента, когда еще не было открыто ни одного из них, сформулировал английский химик и физик Р. Бойль. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие. Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений об «огненной материи» (флогистоне).

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном. В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Концепция химических соединений. Долгое время химики эмпирическим путем определяли, что относится к химическим соединениям, а что - к простым телам или смесям. В начале XIX в. Ж. Пруст сформулировал закон постоянства состава, в соответствии с которым любое индивидуальное химическое соединение обладает строго определенным, неизменным составом и тем самым отличается от смесей.

Теоретическое обоснование закона Пруста было дано Дж. Дальтоном в законе кратных отношений. Согласно этому закону состав любого вещества можно было представить как простую формулу, а эквивалентные составные части молекулы - атомы, обозначавшиеся соответствующими символами, - могли замещаться на другие атомы.

Химическое соединение - понятие более широкое, чем «сложное вещество», которое должно состоять из двух и более разных химических элементов. Химическое соединение может состоять и из одного элемента. Это О2, графит, алмаз и другие кристаллы без посторонних включений в их решетку в идеальном случае».

Дальнейшее развитие химии и изучение все большего числа соединений приводили химиков к мысли, что наряду с веществами, имеющими определенный состав, существуют еще и соединения переменного состава - бертоллиды. В результате были переосмыслены представления о молекуле в целом. Молекулой, как и прежде, продолжали называть наименьшую частичку вещества, способную определять его свойства и существовать самостоятельно. Но в XX в. была понята сущность химической связи, которая стала пониматься как вид взаимодействия между атомами и атомно-молекулярными частицами, обусловленный совместным использованием их электронов.

На этой концептуальной основе была разработана стройная атомно-молекулярная теория того времени, которая впоследствии оказалась не в состоянии объяснить многие экспериментальные факты конца XIX - начала XX вв. Картина прояснилась с открытием сложного строения атома, когда стали ясны причины связи атомов, взаимодействующих друг с другом. В частности, химические связи указывают на взаимодействие атомных электрических зарядов, носителями которых оказываются электроны и ядра атомов.

Существуют ковалентные, полярные, ионные и ионно-ковалентные химические связи, отличающиеся характером физического взаимодействия частиц между собой. Поэтому теперь под химическим соединением понимают определенное вещество, состоящее из одного или нескольких химических элементов, атомы которых за счет взаимодействия друг с другом объединены в частицу, обладающую устойчивой структурой: молекулу, комплекс, монокристалл или иной агрегат.

Осуществляют химические связи между атомами электроны, расположенные на внешней оболочке и связанные с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами различают ковалентную, ионную и металлическую химические связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов.

Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химическую связь объясняют взаимодействием электрических полей, образующихся между электронами и ядрами атомов в процессе химических преобразований. Прочность химической связи зависит от энергии связи.

Основываясь на законах термодинамики, химия определяет возможность того или иного процесса, условия его осуществления, внутреннюю энергию. «Внутренняя энергия - это общий запас энергии системы, который складывается из энергии движения и взаимодействия молекул, энергии движения и взаимодействия ядер и электронов в атомах, в молекулах и т.п.».

2.3.2 Второй уровень химического знания

Многочисленные эксперименты по изучению свойств химических элементов в первой половине XIX в. привели ученых к убеждению, что свойства веществ и их качественное разнообразие обусловлены не только составом элементов, но и структурой их молекул. К этому времени в химическом производстве стала преобладать переработка огромных масс вещества растительного и животного происхождения. Их качественное разнообразие потрясающе велико - сотни тысяч химических соединений, состав которых крайне однообразен, так как они состоят из нескольких элементов-органогенов (углерода, водорода, кислорода, серы, азота, фосфора).

Наука считает, что только эти шесть элементов составляют основу живых систем, из-за чего они получили название органогенов. Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов: натрий, калий, кальций, магний, железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор.

Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

Объяснение необычайно широкому разнообразию органических соединений при столь бедном элементном составе было найдено в явлениях изомерии и полимерии. Так было положено начало второму уровню развития химических знаний, который получил название структурной химии.

Структура - это устойчивая упорядоченность качественно неизменной системы (молекулы). Под данное определение подпадают все структуры, которые исследуются в химии: квантово-механические, основанные на понятиях валентности и химического сродства, и др.

Она стала более высоким уровнем по отношению к учению о составе вещества, включив его в себя. При этом химия из преимущественно аналитической науки превратилась в синтетическую. Главным достижением этого этапа развития химии стало установление связи между структурой молекул и реакционной способностью веществ.

Термин «структурная химия» условен. В нем подразумевается такой уровень химических знаний, при котором, комбинируя атомы различных химических элементов, можно создать структурные формулы любого химического соединения. Возникновение структурной химии означало, что появилась возможность для целенаправленного качественного преобразования веществ, для создания схемы синтеза любых химических соединений, в том числе и ранее неизвестных.

Основы структурной химии были заложены Дж. Дальтоном, который показал, что любое химическое вещество представляет собой совокупность молекул, состоящих из определенного количества атомов одного, двух или трех химических элементов. Затем И.-Я. Берцелиус выдвинул идею, что молекула представляет собой не простое нагромождение атомов, а определенную упорядоченную структуру атомов, связанных между собой электростатическими силами.

Важнейшим шагом в развитии структурной химии стало появление теории химического строения органических соединений русского химика A.M. Бутлерова, который считал, что образование молекул из атомов происходит за счет замыкания свободных единиц сродства, но при этом он указывал на то, с какой энергией (большей или меньшей) это сродство связывает вещества между собой. Иными словами, Бутлеров впервые в истории химии обратил внимание на энергетическую неравноценность разных химических связей. Эта теория позволила строить структурные формулы любого химического соединения, так как показывала взаимное влияние атомов в структуре молекулы, а через это объясняла химическую активность одних веществ и пассивность других.

В XX в. структурная химия получила дальнейшее развитие. В частности, было уточнено понятие структуры, под которой стали понимать устойчивую упорядоченность качественно неизменной системы. Также было введено понятие атомной структуры - устойчивой совокупности ядра и окружающих его электронов, находящихся в электромагнитном взаимодействии друг с другом, - и молекулярной структуры - сочетания ограниченного числа атомов, имеющих закономерное расположение в пространстве и связанных друг с другом химической связью с помощью валентных электронов.

Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии.

Например, многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. Вследствие этого их нельзя было использовать в промышленном масштабе.

Структурная химия неорганических соединений ищет пути получения кристаллов для производства высокопрочных материалов с заданными свойствами, обладающих термостойкостью, сопротивлением агрессивной среде и другими качествами, предъявляемыми сегодняшним уровнем развития науки и техники. Решение этих вопросов наталкивается на различные препятствия. Выращивание, например, некоторых кристаллов требует исключения условий гравитации. Поэтому такие кристаллы выращивают в космосе, на орбитальных станциях.


3.3 Третий уровень химического знания. Учение о химических процессах

Учение о химических процессах - область науки, в которой осуществлена наиболее глубокая интеграция физики, химии и биологии. В основе этого учения находятся химическая термодинамика и кинетика, поэтому оно в равной степени принадлежит физике и химии. Одним из основоположников этого научного направления стал русский химик Н.Н. Семенов, основатель химической физики.

Учение о химических процессах базируется на идее, что способность к взаимодействию различных химических реагентов определяется кроме всего прочего и условиями протекания химических реакций, которые могут оказывать воздействие на характер и результаты этих реакций.

Важнейшей задачей химиков становится умение управлять химическими процессами, добиваясь нужных результатов. В самом общем виде методы управления химическими процессами можно подразделить на термодинамические (влияют на смещение химического равновесия реакции) и кинетические (влияют на скорость протекания химической реакции).

Для управления химическими процессами разработаны термодинамический и кинетический методы.

Французский химик А. Лее Шателье в конце XIX в. сформулировал принцип подвижного равновесия, обеспечив химиков методами смещения равновесия в сторону образования целевых продуктов. Эти методы управления и получили название термодинамических. Каждая химическая реакция в принципе обратима, но на практике равновесие смещается в ту или иную сторону. Это зависит как от природы реагентов, так и от условий процесса.

Термодинамические методы преимущественно влияют на направление химических процессов, а не на их скорость.

Скоростью химических процессов управляет химическая кинетика, в которой изучается зависимость протекания химических процессов от строения исходных реагентов, их концентрации, наличия в реакторе катализаторов и других добавок, способов смешения реагентов, материала и конструкции реактора и т. п.

Химическая кинетика. Объясняет качественные и количественные изменения в химических процессах и выявляет механизм реакции. Реакции проходят, как правило, ряд последовательных стадий, которые составляют полную реакцию. Скорость реакции зависит от условий протекания и природы веществ, вступивших в нее. К ним относятся концентрация, температура и присутствие катализаторов. Описывая химическую реакцию, ученые скрупулезно отмечают все условия ее протекания, поскольку в других условиях и при иных физических состояниях веществ эффект будет разный.

Задача исследования химических реакций является очень сложной. Ведь практически все химические реакции представляют собой отнюдь не простое взаимодействие исходных реагентов, а сложные цепи последовательных стадий, где реагенты взаимодействуют не только друг с другом, но и со стенками реактора, могущими как катализировать (ускорять), так и ингибировать (замедлять) процесс.

Катализ - ускорение химической реакции в присутствии особых веществ - катализаторов, которые взаимодействуют с реагентами, но в реакции не расходуются и не входят в конечный состав продуктов. Он был открыт в 1812 г. российским химиком К. Г. С. Кирхгофом.

Сущность катализа сводится к следующему:

) активная молекула реагента достигается за счет их неполновалентного взаимодействия с веществом катализатора и состоит в расслаблении химических связей реагента;

) в общем случае любую каталитическую реакцию можно представить проходящей через промежуточный комплекс, в котором происходит перераспределение расслабленных (неполновалентных) химических связей.

Каталитические процессы различаются по своей физической и химической природе на следующие типы:

гетерогенный катализ - химическая реакция взаимодействия жидких или газообразных реагентов на поверхности твердого катализатора;

гомогенный катализ - химическая реакция в газовой смеси или в жидкости, где растворены катализатор и реагенты;

электрокатализ - реакция на поверхности электрода в контакте с раствором и под действием электрического тока;

фотокатализ - реакция на поверхности твердого тела или в жидком растворе, стимулируется энергией поглощенного излучения.

Применение катализаторов изменило всю химическую промышленность. Катализ необходим при производстве маргарина, многих пищевых продуктов, а также средств защиты растений. Почти вся промышленность основной химии (60-80 %) основаны на каталитических процессах. Химики не без основания говорят, что некаталитических процессов вообще не существует, поскольку все они протекают в реакторах, материал стенок которых служит своеобразным катализатором.

С участием катализаторов скорость некоторых реакций возрастает в 10 млрд раз. Есть катализаторы, позволяющие не просто контролировать состав конечного продукта, но и способствующие образованию молекул определенной формы, что сильно влияет на физические свойства продукта (твердость, пластичность).

В современных условиях одно из важнейших направлений развития учения о химических процессах - создание методов управления этими процессами. Поэтому сегодня химическая наука занимается разработкой таких проблем, как химия плазмы, радиационная химия, химия высоких давлений и температур.

Химия плазмы изучает химические процессы в низкотемпературной плазме при 1000-10 000 °С. Такие процессы характеризуются возбужденным состоянием частиц, столкновением молекул с заряженными частицами и очень высокими скоростями химических реакций. В плазмохимических процессах скорость перераспределения химических связей очень высока, поэтому они очень производительны.

Одним из самых молодых направлений в исследовании химических процессов является радиационная химия, которая зародилась во второй половине XX в. Предметом ее разработок - стали превращения самых разнообразных веществ под воздействием ионизирующих излучений. Источниками ионизирующего излучения служат рентгеновские установки, ускорители заряженных частиц, ядерные реакторы, радиоактивные изотопы. В результате радиационно-химических реакций вещества получают повышенную термостойкость и твердость.

Еще одна область развития учения о химических процессах - химия высоких и сверхвысоких давлений. Химические превращения веществ при давлениях выше 100 атм относятся к химии высоких давлений, а при давлениях выше 1000 атм - к химии сверхвысоких давлений.

При высоком давлении сближаются и деформируются электронные оболочки атомов, что ведет к повышению реакционной способности веществ. При давлении 102-103 атм исчезает различие между жидкой и газовой фазами, а при 103-105 атм - междутвердой и жидкой фазами. При высоком давлении сильно меняются физические и химические свойства вещества. Например, при давлении 20 000 атм. металл становится эластичным, как каучук.

Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Эти процессы изучают химия, физика и биология. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить, хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема, поскольку они самопроизвольно создают массу побочных продуктов.


3.4 Четвертый уровень химического знания. Эволюционная химия

Эволюционная химия зародилась в 1950 - 1960 гг. В основе эволюционной химии лежат процессы биокатализа, ферментологии; ориентирована она главным образом на исследование молекулярного уровня живого, что основой живого является биокатализ, т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой, что и служит идеалом для многих химиков.

Идея концептуального представления о ведущей роли ферментов, биорегуляторов в процессе жизнедеятельности, предложенная французским естествоиспытателем Луи Пастером в ХIX веке, остается основополагающей и сегодня. Чрезвычайно плодотворным с этой точки зрения является исследование ферментов и раскрытие тонких механизмов их действия.

Ферменты- это белковые молекулы, синтезируемые живыми клетками. В каждой клетке имеются сотни различных ферментов. С их помощью осуществляются многочисленные химические реакции, которые благодаря каталитическому действию ферментов могут идти с большой скоростью при температурах, подходящих для данного организма, т.е. в пределах примерно от 5 до 40 градусов. Можно сказать, что ферменты - это биологические катализаторы.

В основе эволюционной химии принцип использования таких условий, которые приводят к самосовершенствованию катализаторов химических реакций, т. е. к самоорганизации химических систем.

В эволюционной химии существенное место отводится проблеме «самоорганизации» систем. Теория самоорганизации «отражает законы такого существования динамических систем, которое сопровождается их восхождением на все более высокие уровни сложности в системной упорядоченности, или материальной организации». В сущности, речь идет об использовании химического опыта живой природы. Это своеобразная биологизация химии. Химический реактор предстает как некое подобие живой системы, для которой характерны саморазвитие и определенные черты поведения. Так появилась эволюционная химия как высший уровень развития химического знания.

Под эволюционными проблемами понимают проблемы самопроизвольного синтеза новых химических соединений (без участия человека). Эти соединения являются более сложными и более высокоорганизованными продуктами по сравнению с исходными веществами. Поэтому эволюционную химию заслуженно считают предбиологией, наукой о самоорганизации и саморазвитии химических систем.

До последней трети XX в. об эволюционной химии ничего не было известно. В отличие от биологов, которые вынуждены были использовать эволюционную теорию Дарвина для объяснения происхождения многочисленных видов растений и животных, химики не интересовались вопросом происхождения вещества, потому что получение любого нового химического соединения всегда было делом рук и разума человека.

Постепенное развитие науки XIX в., приведшее к раскрытию структуры атома и детальному познанию строения и состава клетки, открыло перед химиками и биологами практические возможности совместной работы над химическими проблемами учения о клетке. Для освоения опыта живой природы и реализации полученных знания в промышленности химики наметили ряд перспективных путей.

Во-первых ведутся исследования в области металлокомплексного катализа, который обогащается приемами, используемыми живыми организмами в реакциях с участием ферментов (биокатализаторов).

Во-вторых, ученые пытаются моделировать биокатализаторы. Уже удалось создать модели многих ферментов, которые извлекаются из живой клетки и используются в химических реакциях. Но проблема осложняется тем, что ферменты, устойчивые внутри клетки, вне нее быстро разрушаются.

В-третьих, развивается химия иммобилизованных систем, благодаря которой биокатализаторы стали стабильными, устойчивыми в химических реакциях, появилась возможность их многократного использования.

В-четвертых, химики пытаются освоить и использовать весь опыт живой природы. Это позволит ученым создать полные аналоги живых систем, в которых будут синтезироваться самые разнообразные вещества. Таким образом, будут созданы принципиально новые химические технологии.

Изучение процессов самоорганизации в химии привело к формированию двух подходов к анализу предбиологических систем: субстратного и функционального.

Результатом субстратного подхода стала информация об отборе химических элементов и структур.

Химикам важно понять, каким образом из минимума химических элементов (основу жизнедеятельности живых организмов составляют 38 химических элементов) и химических соединений (большинство образовано на основе 6-18 элементов) образовались сложнейшие биосистемы.

Функциональный подход в эволюционной химии. В рамках этого подхода также изучается роль катализа и выявляются законы, которым подчиняются процессы самоорганизации химических систем.

Роль каталитических процессов усиливалась по мере усложнения состава и структуры химических систем. Именно на этом основании некоторые ученые стали связывать химическую эволюцию с самоорганизацией и саморазвитием каталитических систем.

На основе этих наблюдений профессор МГУ А.П. Руденко выдвинул теорию саморазвития открытых каталитических систем. Очень скоро она была преобразована в общую теорию химической эволюции и биогенеза. В ней решены вопросы о движущих силах и механизмах эволюционного процесса, т. е. о законах химической эволюции, об отборе элементов и структур и их причинной обусловленности, о высоте химической организации и иерархии химических систем как следствии эволюции.

Сущность этой теории состоит в том, что эволюционирующим веществом являются катализаторы, а не молекулы. При катализе идет реакция химического взаимодействия катализатора с реагентами с образованием при этом промежуточных комплексов со свойствами переходного состояния. Именно такой комплекс Руденко назвал элементарной каталитической системой. Если в ходе реакции идет постоянный приток извне новых реактивов, отвод готовой продукции, а также выполняются некоторые дополнительные условия, реакция может идти неограниченно долго, находясь на одном и том же стационарном уровне. Такие многократно возобновляемые комплексы являются элементарными открытыми каталитическими системами.

Саморазвитие, самоорганизация и самоусложнение каталитических систем происходят за счет постоянного притока трансформируемой энергии. А так как основным источником энергии является базисная реакция, то максимальное эволюционное преимущество получают каталитические системы, развивающиеся на базе экзотермических реакций. Таким образом, реакция является не только источником энергии, но и орудием отбора наиболее прогрессивных эволюционных изменений катализаторов.

Тем самым Руденко сформулировал основной закон химической эволюции, согласно которому с наибольшей скоростью и вероятностью реализуются те пути эволюционных изменений катализаторов, которые связаны с ростом их абсолютной каталитической активности. При этом по параметру абсолютной каталитической активности складываются механизмы конкуренции и естественного отбора.

Теория саморазвития каталитических систем дает следующие возможности: выявлять этапы химической эволюции и на этой основе классифицировать катализаторы по уровню их организации; использовать принципиально новый метод изучения катализа; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу, связанного с преодолением второго кинетического предела саморазвития каталитических систем.

Набирает теоретический и практический потенциал новейшее направление, расширяющее представление об эволюции химических систем, нестационарная кинетика.

Развитие химических знаний позволяет надеяться на разрешение многих проблем, которые встали перед человечеством в результате его наукоемкой и энергоемкой практической деятельности.

Химическая наука на ее высшем эволюционном уровне углубляет представления о мире. Концепции эволюционной химии, в том числе о химической эволюции на Земле, о самоорганизации и самосовершенствовании химических процессов, о переходе от химической эволюции к биогенезу, являются убедительным аргументом, подтверждающим научное понимание происхождения жизни во Вселенной.

Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы.

Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет.

Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека.

элемент ковалентный биорегулятор полярный

Список использованной литературы


1. Краткая химическая энциклопедия, гл. ред. И. Л. Кнунянц, т. 1-5, М., 1961-67;

Краткий справочник по химии, под ред. О. Д. Куриленко, 4 изд.. К., 1974;

Общая химия, Полинг Л., пер. с англ., М., 1974;

Современная общая химия, Кемпбел Дж., пер. с англ., [т.] 1-3, М., 1975.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.

Развитие химических знаний стимулируется необходимостью получения человеком различных веществ для своей жизнедеятельности. В наши дни химическая наука дает возможность получать вещества с заданными свойствами, находить способы управления этими свойствами, что является основной проблемой химии и системообразующим началом ее как науки.

Химия обычно рассматривается как наука, изучающая свойства и превращения веществ, сопровождающиеся изменением их состава и строения. Она изучает природу и свойства различных химических связей, энергетику химических реакций, реакционную способность веществ, свойства катализаторов и т.д.

Термин «химия » происходит, по Плутарху, от одного из древних названий Египта, Хеми («черная земля»). Именно в Египте задолго до нашей эры достигли значительного развития металлургия, керамика, изготовление стекла, крашение, парфюмерия, косметика и др. Существует и иная точка зрения, связанная с греческим hymia - искусство литья (от hyma - литье).

На арабском Востоке появился термин «алхимия ». Целью алхимиков, главным образом, было создание «философского камня», способного все металлы превращать в золото. В основе этого лежал практический заказ: золото в Европе было необходимо для развития торговли, а известных месторождений было мало. Алхимики накопили огромный практический опыт превращения веществ, разработали соответствующий инструментарий, методику, химическую посуду и др.

Что касается химии , то, несмотря на многообразие эмпирического материала, в этой науке вплоть до открытия в 1869 г. периодической системы химических элементов Д.И.Менделеевым (1834 – 1907), по существу, не существовало объединяющей концепции , с помощью которой можно было бы объяснить весь накопленный фактический материал. Следовательно, невозможно было представить все наличное знание как систему теоретической химии.

Было бы, однако, неправильным не учитывать той громадной исследовательской работы, которая привела к утверждению системного взгляда на химические знания. Если обратиться к фундаментальным теоретическим обобщениям химии, то могут быть выделены четыре концептуальных уровня.

Уже с первых шагов химики на интуитивном и эмпирическом уровне поняли, что свойства простых веществ и химических соединений зависят от тех неизменных начал , которые впоследствии стали называть элементами . Выявление и анализ этих элементов, раскрытие связи между ними и свойствами веществ охватывает значительный период в истории химии. Этот первый концептуальный уровень можно назвать учением о составе веществ. На этом уровне проходило исследование различных свойств и превращений веществ в зависимости от их химического состава, определяемого их элементами. Очевидна поразительная аналогия с концепцией атомизма в физике. Химики, как и физики, искали ту первоначальную основу, с помощью которой пытались объяснить свойства всех простых и сложных веществ. Сформулирована эта концепция была довольно поздно – в 1860 году, на первом Международном съезде химиков в Карлсруэ в Германии. Ученые-химики исходили из того, что:

· все вещества состоят из молекул, которые находятся в непрерывном и самопроизвольном движении;

· все молекулы состоят из атомов;

· атомы и молекулы находятся в непрерывном движении;

Второй концептуальный уровень познания связан с исследованием структуры , то есть способа взаимодействия элементов в составе веществ и их соединений. Было установлено, что свойства веществ, полученных в результате химических реакций, зависят не только от элементов, но и от взаимосвязи и взаимодействия этих элементов в процессе реакции. Так, алмаз и уголь обладают различными свойствами именно вследствие различия структур, хотя их химический состав одинаков.

Третий концептуальный уровень познания представляет собой исследование внутренних механизмов и условий протекания химических процессов , таких, как температура, давление, скорость протекания реакций и некоторые другие. Все эти факторы оказывают громадное влияние на характер процессов и объем получаемых веществ, что имеет первостепенное значение для массового производства.

Четвертый концептуальный уровень – уровень эволюционной химии – является дальнейшим развитием предыдущего уровня, связанным с более глубоким изучением природы реагентов, участвующих в химических реакциях, а также применением катализаторов, значительно ускоряющих скорость их протекания. На этом уровне осмысливается процесс происхождения живой материи из материи косной.

2. Учение о составе вещества.


На этом уровне решались вопросы определения химического элемента, химического соединения и получения новых материалов на базе более широкого использования химических элементов.

Первое научное определение химического элемента, как «простого тела», сформулировал в XVII в. английский химик и физик Р. Бойль. Но в это время еще не было открыто ни одного из них. Первым был открыт химический элемент фосфор в 1669 г., потом кобальт, никель и другие.

4. Эволюционная химия

3. Учение о химических процессах

2. Структурная химия

1. Учение о составе

1660-е гг.

1800-е гг.

1950-е гг.

1970-е гг.

Настоящее время

Рис. 1. Основные концепции химической науки.

Но еще и в XVIII веке железо, медь и другие, известные в то время металлы, ученые рассматривали как сложные тела, а окалину, получающуюся при их нагревании – за простое тело. Но окалина – это оксид металла, сложное тело.

Ошибочное представление, существовавшее в XVIII веке, было связано с ложной гипотезой флогистона немецкого врача и химика Георга Шталя (1660 – 1734). Он считал, что металлы состоят из окалины и флогистона (от греч. flogizein – зажигать, гореть), особого невесомого вещества, которое при нагревании улетучивается и остается чистый элемент. В состав пчелиного воска и угля, по его мнению, входит преимущественно флогистон, который при горении улетучивается и в результате остается лишь немного золы.

Открытие французским химиком А. Л. Лавуазье кислорода и установление его роли в образовании различных химических соединений позволило отказаться от прежних представлений о флогистоне. Лавуазье впервые систематизировал химические элементы на базе имевшихся в XVIII в. знаний. Постепенно химики открывали все новые и новые химические элементы, описывали их свойства и реакционную способность и благодаря этому накопили огромный эмпирический материал, который необходимо было привести в определенную систему . Такие системы предлагались разными учеными, но были весьма несовершенными потому, что в качестве системообразующего фактора брались несущественные, второстепенные и даже чисто внешние признаки элементов.

Великая заслуга Д. И. Менделеева состоит в том, что, открыв в 1869 г. периодический закон , он заложил фундамент для построения подлинно научной системы химических элементов. В качестве системообразующего фактора он выбрал атомный вес . В соответствии с атомным весом он расположил химические элементы в систему и показал, что их свойства находятся в периодической зависимости от величины атомного веса. До системного подхода Менделеева учебники по химии были очень громоздки. Так, учебник химии Л.Ж. Тенара состоял из 7 томов по 1000 – 1200 страниц каждый.

Периодический закон Д. И. Менделеева сформулирован в следующем виде: «Свойства простых тел, а также формы и свойства соединений элементов находятся в периодической зависимости от величины атомных весов элементов».

Это обобщение давало новые представления об элементах, но в силу того, что еще не было известно строение атома, физический смысл его был недоступен . В современном представлении этот периодический закон выглядит следующим образом: «Свойства простых веществ, а также формы и свойства соединений элементов находятся в периодической зависимости от величины заряда ядра атома (порядкового номера)». Например, элемент хлор имеет два изотопа , отличающиеся друг от друга по массе атома. Но оба они относятся к одному химическому элементу - хлору из-за одинакового заряда их ядер. Атомный же вес является средним арифметическим величин масс изотопов, из которых состоит элемент.

В Периодической системе Д.И. Менделеева насчитывалось 62 элемента, в 1930-е гг. она заканчивалась ураном (Z = 92). В 1999 г. было сообщено, что путем физического синтеза атомных ядер открыт 114-й элемент.

Длительное время химикам казалось очевидным, что именно относится к химическим соединениям , а что - к простым телам или смесям. Однако применение в последнее время физических методов исследования вещества позволило выявить физическую природу химизма , т.е. те внутренние силы, которые объединяют атомы в молекулы, представляющие собой прочную квантово-механическую целостность. Такими силами оказались химические связи.

Химическая связь является таким взаимодействием, которое связывает отдельные атомы в более сложные образования, в молекулы, ионы, кристаллы, т.е. в те структурные уровни организации материи, которые изучает химическая наука. Химические связи представляют собой обменное взаимодействие электронов с соответствующими характеристиками. Речь идет, прежде всего, об электронах, расположенных на внешней оболочке и связанных с ядром наименее прочно. Их назвали валентными электронами. В зависимости от характера взаимодействия между этими электронами выделяют типы связи.

Ковалентная связь осуществляется за счет образования электронных пар, в одинаковой мере принадлежащих обоим атомам.

Ионная связь представляет собой электростатическое притяжение между ионами, образованное за счет полного смещения электрической пары к одному из атомов, например, NaCl.

Металлическая связь - это связь между положительными ионами в кристаллах атомов металлов, образующаяся за счет притяжения электронов, но перемещающаяся по кристаллу в свободном виде.

Дальнейшее развитие науки позволило уточнить, что свойства химических элементов зависят от заряда ядра атомов, который определяется числом протонов или соответственно электронов. В настоящее время химическим элементом называют совокупность атомов с конкретным зарядом ядра Z, хотя и различающихся по своей массе, вследствие чего атомные веса элементов не всегда выражаются целыми числами.

Простое вещество – это форма существования химического элемента в свободном состоянии. Однако, к примеру, даже газообразный (не говоря уже о жидком и твердом агрегатном состоянии) водород существует в двух разновидностях, различающихся магнитной ориентацией ядер Н – ортоводород и параводород. Они различаются, к примеру, теплоемкостью. Существует также две разновидности газообразного и четыре – жидкого кислорода. Поэтому простых веществ насчитывается св. 500, в то время как химических элементов – чуть более ста.

С позиций атомизма решается также проблема химического соединения. Что считать смесью, а что химическим соединением? Обладает ли такое соединение постоянным или переменным составом?

Французский химик Жозеф Пруст (1754 – 1826) считал, что любое химическое соединение должно обладать вполне определенным, неизменным составом: «…природа дала химическому соединению постоянный состав и тем самым поставила его в совершенно особое положение по сравнению с раствором, сплавом и смесью» . При этом состав химического соединения не зависит от способа его получения.

Впоследствии закон постоянства состава с позиций атомно-молекулярного учения обосновал выдающийся английский химик Джон Дальтон (1766 – 1844). Он ввел в науку понятие «атомный вес» и утверждал, что всякое вещество, простое или сложное, состоит из мельчайших частиц – молекул, которые в свою очередь образованы из атомов. Именно молекулы являются наименьшими частицами, обладающими свойствами вещества.

Долгое время сформулированный Прустом закон постоянства химического состава считался абсолютной истиной, хотя другой французский химик Клод Бертолле (1748 – 18232) указывал на существование соединений переменного состава в форме растворов и сплавов. Впоследствии были найдены более убедительные доказательства существования химических соединений переменного состава в школе известного русского физикохимика Николая Семеновича Курнакова (1860 – 1940). В честь К. Бертолле он назвал их бертоллидами. К ним он отнес те соединения, состав которых зависит от способа их получения . Например, соединения таких двух металлов, как марганец и медь, магний и серебро и других характеризуются переменным составом, но они составляют единые химические соединения. Со временем химики открыли другие соединения такого же переменного состава и пришли к выводу, что они отличаются от соединений постоянного состава тем, что не обладают специфическим молекулярным строением.

Поскольку выяснилось, что природа соединения, то есть характер связи атомов в его молекуле зависит от их химических связей , то расширилось и представление о молекуле. Молекулой по-прежнему называют наименьшую частицу вещества, которая определяет его свойства и может существовать самостоятельно. Однако к молекулам теперь относят также разнообразные другие квантово-механические системы (ионные, атомные монокристаллы, полимеры, возникающие на основе водородных связей, и другие макромолекулы). В них химическая связь осуществляется не только путем взаимодействия внешних , валентных электронов, но и ионов, радикалов и других компонентов. Они обладают молекулярным строением, хотя и не находятся в строго постоянном составе.

Таким образом, ныне исчезает резкое прежнее противопоставление химических соединений постоянного состава, обладающих специфическим молекулярным строением, и соединений переменного состава, лишенных этой специфики. Теряет также силу отождествление химического соединения с молекулой, состоящей из нескольких разных атомов химических элементов. В принципе молекула соединения может состоять и из двух или нескольких атомов одного элемента: это молекулы Н 2 , О 2 , графит, алмаз и другие кристаллы.

Ныне имеются сведения о 8 млн. индивидуальных химических соединений постоянного и миллиардах – переменного состава.

В рамках учения о составе и строении элементов важное место занимает проблема производства новых материалов. Речь идет о включении в их состав новых химических элементов. Дело в том, что 98,7% массы слоя Земли, на котором осуществляет свою производственную деятельность человек, составляют восемь химических элементов: 47,0% - кислород, 27,5% - кремний, 8,8% - алюминий, 4,6% - железо, 3,6% - кальций, 2,6% - натрий, 2,5% - калий, 2,1% - магний. Однако эти химические элементы распределены на Земле неравномерно и также неравномерно используются. Более 95% изделий из металла в своей основе содержат железо. Такое потребление ведет к дефициту железа. Поэтому стоит задача использовать для человеческой деятельности и другие химические элементы, способные заменить железо, в частности, наиболее распространенный кремний. Силикаты, различные соединения кремния с кислородом и другими элементами составляют 97% массы земной коры.

На основе современных достижений химии появилась возможность замены металлов керамикой не только как более экономичным продуктом, но во многих случаях и как более подходящим конструкционным материалом по сравнению с металлом. Более низкая плотность керамики (40%) дает возможность снизить массу изготовляемых из нее предметов. Включение в производство керамики новых химических элементов: титана, бора, хрома, вольфрама и других позволяет получать материалы с заранее заданными специальными свойствами (огнеупорность, термостойкость, высокая твердость и т.д.).

Во второй половине XX в. стали использоваться все новые и новые химические элементы в синтезе элементоорганических соединений от алюминия до фтора. Часть таких соединений служит в качестве химических реагентов для лабораторных исследований, а другая - для синтеза новейших материалов.

Около 10 лет назад насчитывалось более 1 млн. разновидностей продукции, выпускаемой химической промышленность. Ныне в химических лабораториях нашей планеты ежедневно синтезируется 200 – 250 новых химических соединений.

3. Уровень структурной химии.

Структурная химия представляет собой уровень развития химических знаний, на котором доминирует понятие «структура», т.е. структура молекулы, макромолекулы, монокристалла.

С возникновением структурной химии у химической науки появились неизвестные ранее возможности целенаправленного качественного влияния на преобразование вещества. Известный немецкий химик Фридрих Кекуле (1829 – 1896) стал связывать структуру с понятием валентности элемента. Известно, что химические элементы обладают определенной валентностью (от лат. valentia – сила, способность) – способностью образовывать соединения с другими элементами. Валентность как раз и определяет, с каким числом атомов способен соединяться атом данного элемента. Еще в 1857 г. Ф.А. Кекуле показал, что углерод четырехвалентен, и это дает возможность присоединить к нему до четырех элементов одновалентного водорода. Азот может присоединить до трех одновалентных элементов, кислород - до двух.

Эта схема Кекуле натолкнула исследователей на понимание механизма получения новых химических соединений. А. М. Бутлеров заметил, что в таких соединениях большую роль играет энергия , с которой вещества связываются между собой . Эта трактовка Бутлерова подтвердилась исследованиям квантовой механики. Таким образом, исследование структуры молекулы неразрывно связано с квантово-механическими расчетами.

На основе представлений о валентности возникли те структурные формулы , которыми пользуются при изучении химии, особенно органической. Комбинируя атомы различных химических элементов по их валентности, можно прогнозировать получение различных химических соединений в зависимости от исходных реагентов. Таким путем можно было управлять процессом синтеза различных веществ с заданными свойствами, а именно это и составляет важнейшую задачу химической науки.

В 60 – 80-е гг. XIX века появился термин «органический синтез». Из аммиака и каменноугольной смолы были получены анилиновые красители - фуксин, анилиновая соль, ализарин, а позднее - взрывчатые вещества и лекарственные препараты - аспирин и др. Структурная химия дала повод для оптимистических заявлений, что химики могут все.

Однако дальнейшее развитие химической науки и основанного на ее достижениях производства показали более точно возможности и пределы структурной химии . На уровне структурной химии не представлялось возможным указать эффективные пути получения этилена, ацетилена, бензола и других углеводородов из парафиновых углеводородов. Многие реакции органического синтеза на основе структурной химии давали очень низкие выходы необходимого продукта и большие отходы в виде побочных продуктов. А сам технологический процесс является многоэтапным и трудноуправляемым . Вследствие этого их нельзя было использовать в промышленном масштабе. Требовалось углубление знаний о химических процессах.

4. Учение о химических процессах.

Химические процессы представляют собой сложнейшее явление как в неживой, так и в живой природе. Перед химической наукой стоит принципиальная задача - научиться управлять химическими процессами. Дело в том, что некоторые процессы не удается осуществить , хотя в принципе они осуществимы, другие трудно остановить - реакции горения, взрывы, а часть из них трудноуправляема , поскольку они самопроизвольно создают массу побочных продуктов.

Все химические реакции имеют свойство обратимости , происходит перераспределение химических связей. Обратимость удерживает равновесие между прямой и обратной реакциями. В действительности равновесие зависит от условий прохождения процесса и чистоты реагентов. Смещение равновесия в ту или другую стороны требует специальных способов управления реакциями. Например, реакция получения аммиака: N 2 + 3H 2 ↔ 2NH 3

Эта реакция проста по составу элементов и своей структуре. Однако на протяжении целого столетия с 1813 по 1913 гг. химики не могли ее провести в законченном виде, так как не были известны средства управления ею. Она была осуществима только после открытия соответствующих законов нидерландским и французским физико-химиками Я.Х. Вант-Гофом и А.Д. Ле-Шателье . Было установлено, что синтез аммиака происходит на поверхности твердого катализатора (специально обработанного железа) при сдвиге равновесия за счет высоких давлений. Получение таких давлений сопряжено с большими технологическими трудностями. С открытием возможностей металлорганического катализатора синтез аммиака происходит при обычной температуре 180 о С и нормальном атмосферном давлении,

Проблемы управления скоростью химических процессов решает химическая кинетика. Она устанавливает зависимость химических реакций от различных факторов.

Термодинамическими факторами , которые оказывают существенное влияние на скорость химических реакций, являются температура и давление в реакторе. Например, смесь водорода и кислорода в условиях комнатной температуры и нормального давления можно хранить годами , и никакой реакции при этом не произойдет. Но стоит пропустить через смесь электрическую искру , как произойдет взрыв .

Скорость реакции в существенной степени зависит от температуры . Каждый знает, что сахар скорее растворяется в горячем чае, чем в холодной воде. Так, для большинства химических реакций скорость протекания при повышении температуры на 100 о С возрастает приблизительно в два раза.

Наиболее активны в этом отношении соединения переменного состава с ослабленными связями между их компонентами. Именно на них и направлено в первую очередь действие разных катализаторов , которые значительно ускоряют ход химических реакций.

5. Эволюционная химия

Химики давно пытались понять, какая лаборатория лежит в основе процесса возникновения жизни из неорганической безжизненной материи - лаборатория, в которой без участия человека получаются новые химические соединения» более сложные, чем исходные вещества?

И. Я. Берцелиус (1779-1848)первым установил, что основой живого является биокатализ , т.е. присутствие различных природных веществ в химической реакции, способных управлять ею, замедляя или ускоряя ее протекание. Эти катализаторы в живых системах определены самой природой. Возникновение и эволюция жизни на Земле была бы невозможна без существования ферментов , служащих по сути дела живыми катализаторами.

Несмотря на то, что ферменты обладают общими свойствами, присущими всем катализаторам, тем не менее, они не тождественны последним, поскольку функционируют в рамках живых систем. Поэтому попытки использовать опыт живой природы для ускорения химических процессов в неорганическом мире наталкиваются на серьезные ограничения .

Тем не менее, современные химики считают, что на основе изучения химии организмов можно будет создать новое управление химическими процессами. Для решения проблемы биокатализа и использования его результатов в промышленных масштабах химическая наука разработала ряд методов:

· изучение и использование приемов живой природы,

· применения отдельных ферментов для моделирования биокатализаторов,

· освоение механизмов живой природы,

· развитие исследований с целью применения принципов биокатализа в химических процессах и химической технологии.

В эволюционной химии существенное место отводится проблеме самоорганизации систем. В процессе самоорганизации предбиологических систем шел отбор необходимых элементов для появления жизни и ее функционирования. Из более чем ста химических элементов, открытых к настоящему времени, многие принимают участие в жизнедеятельности живых организмов. Наука же считает, что только шесть элементов - углерод, водород, кислород, азот, фосфор и сера составляют основу живых систем, из-за чего они получили название органогенов . Весовая доля этих элементов в живом организме составляет 97,4%. Кроме того, в состав биологически важных компонентов живых систем входят еще 12 элементов; натрий, калий, кальций, магний», железо, цинк, кремний, алюминий, хлор, медь, кобальт, бор.

Особая роль отведена природой углероду. Этот элемент способен организовать связи с элементами, противостоящими друг другу, и удерживать их внутри себя. Атомы углерода образуют почти все типы химических связей. На основе шести органогенов и еще около 20 других элементов природа создала около 8 млн. различных химических соединений, обнаруженных к настоящему времени. 96% из них приходится на органические соединения.

Из такого количества органических соединений в строительстве биомира задействованы природой всего несколько сотен. Из 100 известных аминокислот в состав белков входит только 20; лишь по четыре нуклеотида ДНК и РНК лежат в основе всех сложных полимерных нуклеиновых кислот, ответственных за наследственность и регуляцию белкового синтеза в любых живых организмах.

Каким образом природа из такого ограниченного количества химических элементов и химических соединений образовала сложнейший высокоорганизованный комплекс - биосистему ?

Этот процесс ныне представляется следующим образом.

1. На ранних стадиях химической эволюции мира катализ отсутствовал . Условия высоких температур - выше 5 тыс. градусов по Кельвину, электрических разрядов и радиации препятствуют образованию конденсированного состояния.

2. Проявления катализа начинаются при смягчении условий ниже 5 тыс. град, по Кельвину и образования первичных тел.

3. Роль катализатора возрастала (но пока еще незначительно), по мере того, как физические условия (главным образом температура) приближались к современным земным. Появление таких, даже относительно несложных систем, как: СН 3 ОН, СН 2 = СН 2 ; НС ≡ СН, Н 2 СО, НСООН, НС ≡ N, а тем более аминокислот, первичных сахаров, было своеобразной некаталитической подготовкой старта для большого катализа.

4. Роль катализа в развитии химических систем после достижения стартового состояния, т.е. известного количественного минимума органических и неорганических соединений, начала возрастать с фантастической быстротой . Отбор активных соединений происходил в природе из тех продуктов, которые получились относительно большим числом химических путей и обладали широким каталитическим спектром.

В 1969 г. появилась общая теория химической эволюции и биогенеза , выдвинутая ранее в самых общих положениях профессором Московского университета А.П. Руденко. Сущность этой теории состоит в том, что химическая эволюция представляет собой саморазвитие каталитических систем и, следовательно, эволюционирующим веществом являются катализаторы . Открытый А.П. Руденко основной закон химической эволюции гласит, что эволюционные изменения катализатора происходят в том направлении, где проявляется его максимальная активность. Теория саморазвития каталитических систем позволяет выявлять этапы химической эволюции; дать конкретную характеристику пределов в химической эволюции и перехода от химогенеза (химического становления) к биогенезу.

Химическая эволюция на Земле создала все предпосылки для появления живого из неживой природы. А Земля оказалась в таких специфических условиях, что эти предпосылки смогли реализоваться. Жизнь во всем ее многообразии возникла на Земле самопроизвольно из неживой материи, она сохранилась и функционирует уже миллиарды лет. Жизнь полностью зависит от сохранения соответствующих условий ее функционирования. А это во многом зависит от самого человека. Видимо, одним из проявлений природы и является появление человека как самосознающей себя материи. На определенном этапе он может оказывать ощутимое воздействие на среду собственного обитания, причем как позитивное, так и негативное.

В последующих лекциях мы будем более подробно говорить о сущности жизни.

Вопросы для повторения

1. Что изучает химия, и какие основные методы она использует?

2. Какая связь существует между атомным весом и зарядом ядра атома?

3. Что называют химическим элементом?

4. Что называется простым и сложным веществом?

5. От каких факторов зависят свойства веществ?

6. Кто стал основоположником системного подхода в развитии химических знаний? Какую систему он построил?

7. Какой вклад в развитие химических знаний внесли физики?

8. Что такое катализаторы?

9. Какие элементы называют органогенами?

10. Для чего химики изучают лабораторию «живой природы»?

11. Чем отличаются ферменты от химических катализаторов?

12. Каковы потенциальные возможности эволюционной химии?

Литература

Основная:

1. Рузавин Г.И. Концепции современного естествознания: Курс лекций. – М.: Гардарики, 2006. Гл. 11.

2. Концепции современного естествознания / Под ред. В.Н. Лавриненко и В.П. Ратникова. – М.: ЮНИТИ-ДАНА.2003. – Гл. 5.

3. Карпенков С.Х. Основные концепции естествознания. – М.: Академический Проект, 2002. Гл. 4.

Дополнительная:

1. Азимов А. Краткая история химии: Развитие идей и представлений химии от алхимии до ядерной бомбы. – СПб.: Амфора, 2002.

2. Некрасов Б.В. Основы общей химии. Изд. 4-е. В 2 т. – СПб., М., Краснодар: Лань, 2003.

3. Пиментел Д., Курод Д. Возможности химии сегодня и завтра. М., 1992.

4. Фримантл М. Химия в действии: В 2 ч. – М.: Мир, 1998.

5. Эмсли Дж. Элементы. - М.: Мир, 1993.

6. Энциклопедия для детей. Том 17. Химия / Глав. Ред. В.А. Володин. – М.: Аванта+, 2000.

Изотопами называются разновидности атомов, которые имеют одинаковый заряд ядра, но отличаются по своей массе.

Цит. по: Колтун Марк. Мир химии. – М.: Дет. лит., 1988. С.48.