Проект на тему электрический ток в вакууме. Презентации к урокам презентация к уроку по физике на тему

Триод. Потоком электронов, движущихся в электронной лампе от катода к аноду, можно управлять с помощью электрических и магнитных полей. Простейшим электровакуумным прибором, в котором осуществляется управление потоком электронов с помощью электрического поля, является триод. Баллон, анод и катод вакуумного триода имеют такую же конструкцию, как и у диода, однако на пути электронов от катода к аноду в триоде располагается третий электрод, называемый сеткой. Обычно сетка - это спираль из нескольких витков тонкой проволоки вокруг катода. Если на сетку подается положительный потенциал относительно катода, то значительная часть электронов пролетает от катода к аноду, и в цепи анода существует электрический ток. При подаче на сетку отрицательного потенциала относительно катода электрическое поле между сеткой и катодом препятствует движению электронов от катода к аноду, анодный ток убывает. Таким образом, изменяя напряжение между сеткой и катодом, можно регулировать силу тока в цепи анода.

    Слайд 1

    В вакууме отсутствуют заряженные частиц, а следовательно, он является диэлектриком. Т.е. необходимо создать определенные условия, которые помогут получить заряженные частицы. Свободные электроны есть в металлах. При комнатной температуре они не могут покинуть металл, т. к. удерживаются в нем силами кулоновского притяжения со стороны положительных ионов. Для преодоления этих сил электрону необходимо затратить определенную энергию, которая называется работой выхода. Энергию, большую или равную работе выхода, электроны могут получить при разогреве металла до высоких температур. Сделали ученики 10 А Иван Трифонов Павел Романко

    Слайд 2

    При нагревании металла количество электронов с кинетической энергией, большей работы выхода, увеличивается, поэтому из металла вылетает большее количество электронов. Испускание электронов из металлов при его нагревании называют термоэлектронной эмиссией. Для осуществления термоэлектронной эмиссии в качестве оного из электродов используют тонкую проволочную нить из тугоплавкого металла (нить накала). Подключенная к источнику тока нить раскаляется и с ее поверхности вылетают электроны. Вылетевшие электроны попадают в электрическое поле между двумя электродами и начинают двигаться направленно, создавая электрический ток. Явление термоэлектронной эмиссии лежит в основе принципа действия электронных ламп: вакуумного диода, вакуумного триода. Электрический ток в вакууме Вакуумный диод Вакуумный триод

    Слайд 3

    Вакуум

    Вакуум – сильно разряженный газ, в котором длина свободного пробега частиц (от столкновения до столкновения) больше размеров сосуда - электрический ток невозможен, т.к. возможное количество ионизированных молекул не может обеспечить электропроводность;- создать эл.ток в вакууме можно, если использовать источник заряженных частиц;- действие источника заряженных частиц может быть основано на явлении термоэлектронной эмиссии.

    Слайд 4

    Термоэлектронная эмиссия(ТЭЭ)

    Термоэлектро́ннаяэми́ссия (эффект Ричардсона, эффект Эдисона) - явление вырывания электронов из металла при высокой температуре. - это испускание электронов твердыми или жидкими телами при их нагревании до температур, соответствующих видимому свечению раскаленного металла.Нагретый металлический электрод непрерывно испускает электроны, образуя вокруг себя электронное облако.В равновесном состоянии число электронов, покинувших электрод, равно числу электронов, возвратившихся на него (т.к. электрод при потере электронов заряжается положительно).Чем выше температура металла, тем выше плотность электронного облака.

    Слайд 5

    Вакуумный диоид

    Электрический ток в вакууме возможен в электронных лампах.Электронная лампа - это устройство, в котором применяется явление термоэлектронной эмиссии.

    Слайд 6

    Подробное строение вакуумного диода

    Вакуумный диод - это двухэлектродная (А- анод и К - катод) электронная лампа.Внутри стеклянного баллона создается очень низкое давление Н - нить накала, помещенная внутрь катода для его нагревания. Поверхность нагретого катода испускает электроны. Если анод соединен с + источника тока, а катод с -, то в цепи протекает постоянный термоэлектронный ток. Вакуумный диод обладает односторонней проводимостью. Т.е. ток в аноде возможен, если потенциал анода выше потенциала катода. В этом случае электроны из электронного облака притягиваются к аноду, создавая эл.ток в вакууме.

    Слайд 7

    Вольт-амперная характеристика вакуумного диода.

    Зависимость силы тока от напряжения выражена кривой ОАВСD. При испускании электронов катод приобретает положительный заряд и поэтому удерживает возле себя электроны. При отсутствии электрического поля между катодом и анодом, вылетевшие электроны образуют у катода электронное облако. По мере увеличения напряжения между анодом и катодом большее количество электронов устремляется к аноду, а следовательно сила тока увеличивается. Эта зависимость выражена участком графика ОАВ. Участок АВ характеризует прямую зависимость силы тока от напряжения, т.е. в интервале напряжений U1 - U2 выполняется закон Ома. Нелинейная зависимость на участке ВСD объясняется тем, что число электронов, устремляющихся к аноду, стает больше числа электронов, вылетающих с катода. При достаточно большом значении напряжения U3 все электроны, вылетающие с катода, достигают анода, и электрический ток достигает насыщения.

    Слайд 8

    Вольтамперная характеристика вакуумного диода.

    Вакуумный диод используется для выпрямления переменного тока. В качестве источника заряженных частиц можно использовать радиоактивный препарат, испускающий α-частицы.Под действием сил электрического поля α-частицы будут двигаться, т.е. возникнет электрический ток. Таким образом, электрический ток в вакууме может быть создан упорядоченным движением любых заряженных частиц (электронов, ионов).

    Слайд 9

    Электронные пучки

    Свойства и применение: Попадая на тела, вызывают их нагревание (электронная плавка в вакууме) Отклоняются в электрических полях; Отклоняются в магнитных полях под действием силы Лоренца; При торможении пучка, попадающего на вещество возникает рентгеновское излучение; Вызывает свечение (люминесценцию) некоторых твердых и жидких тел (люминофоров); - это поток быстро летящих электронов в электронных лампах и газоразрядных устройствах.

    Слайд 10

    Электронно - лучевая трубка (ЭЛТ)

    Используются явления термоэлектронной эмиссии и свойства электронных пучков. ЭЛТ состоит из электронной пушки, горизонтальных и вертикальных отклоняющих пластин-электродов и экрана.В электронной пушке электроны, испускаемые подогревным катодом, проходят через управляющий электрод-сетку и ускоряются анодами. Электронная пушка фокусирует электронный пучок в точку и изменяет яркость свечения на экране. Отклоняющие горизонтальные и вертикальные пластины позволяют перемещать электронный пучок на экране в любую точку экрана. Экран трубки покрыт люминофором, который начинает светиться при бомбардировке его электронами. Существуют два вида трубок:1) с электростатическим управлением электронного пучка (отклонение эл. пучка только лишь эл.полем);2) с электромагнитным управлением (добавляются магнитные отклоняющие катушки).

    Слайд 11

    Электронно-лучевая трубка

    Применение: в кинескопах телевизора В осциллографах В дисплеях

    Слайд 12

Посмотреть все слайды

краткое содержание других презентаций

«Закон сохранения импульса тела» - Человек. Закон сохранения импульса. Система взаимодействующих тел. Изучить «импульса тела». Природа. Импульс тела. Решение задач. Сборник задач. Мотивация к изучению нового материала. Направление импульса. План изучения физической величины. Графическая интерпретация. Связь физики с другими науками. Рассмотрим систему двух взаимодействующих тел. Экспериментальное подтверждение закона. Ньютон. Выполнить рисунок.

«Свойства жидкостей» - Угол? называется краевым углом. Смачивающие жидкости поднимаются по капиллярам, несмачивающие – опускаются. Но вода, к примеру, не смачивает жирные поверхности. И наоборот: жидкости, не смачивающие капилляр, будут в нем опускаться (стекло и ртуть). Ртуть, напротив, опустится ниже уровня в чаше (правый рисунок). Вода практически полностью смачивает чистую поверхность стекла. Получается, что мы сконструировали "действующую модель" капилляра.

«Проводимость полупроводников» - Рассмотрим электрический контакт двух полупроводников. Разные вещества имеют различные электрические свойства. Проводимость веществ. Схема однополупериодного выпрямителя. Собственная проводимость. Полупроводниковые приборы. Вопросы для контроля. Собственная проводимость полупроводников. Применение полупроводниковых диодов. Примесная проводимость полупроводников. Вопросы. Полупроводниковый диод и его применение.

«Использование атома» - Принцип получения ядерной энергии. «Атом» мирный или военный. Мирный атом на благо человечества. Радиоизотопная диагностика в медицине. Атомный ледокол. Схема работы атомной электростанции. Реактор МИФИ. Ядерная медицина. Мирный «атом». Крупнейшие АЭС России.

«Альтернативные виды топлива» - Солнечная энергия. Современные заменители топлива. Альтернативные виды топлива. Биотопливо. Электроэнергия. Водород. Спирт. Наше настоящее. Процесс переработки мусора. Сжатый воздух. Виды топлива.

«Импульс тела и импульс силы» - Закон сохранения импульса. Железнодорожный вагон. Закон сохранения импульса на примере столкновения шаров. Понятие импульса тела. Изучение нового материала. Сохранение. Организационный этап. Подведение итогов. Изменение импульса тела. Импульс силы. Закрепление изученного материала. Импульс тела. Задача. Демонстрация закона сохранения импульса.

1 слайд

Презентация по физике на тему: Выполнили ученицы 10В класса: Архипова Е. Асиновская В. Рычкова Р.

2 слайд

Вакуумметры При изучении электрических явлений, нам придется уточнить определение вакуума. Вакуум-это такое состояние газа в сосуде, при котором молекулы пролетают от одной стенки сосуда к другой, ни разу не испытав соударений друг с другом.

3 слайд

Суть явления ПЕРВАЯ ЛАМПА НАКАЛИВАНИЯ – копия лампы, изобретенной Т. Эдисоном в 1879 Если два электрода поместить в герметичный сосуд и удалить из сосуда воздух, то электрический ток в вакууме не возникает - нет носителей электрического тока. Американский ученый Т. А. Эдисон (1847-1931) в 1879 г. обнаружил, что в вакуумной стеклянной колбе может возникнуть электрический ток, если один из находящихся в ней электродов нагреть до высокой температуры. Явление испускания свободных электронов с поверхности нагретых тел называется термоэлектронной эмиссией.

4 слайд

Термоэлектронная эмиссия На рисунке вы видите, что диод похож на обычную лампу накаливания, но, кроме вольфрамовой спирали “К” (катода), он в верхней части содержит еще и дополнительный электрод “А” (анод). Из стеклянной колбы диода воздух откачан до состояния глубокого вакуума. Диод включен последовательно в цепь, состоящую из амперметра и источника тока (на рисунке показаны лишь его клеммы “+” и “–”). Термоэлектронная эмиссия. Ею называют явление испускания электронов нагретыми телами. Для знакомства с этим явлением рассмотрим опыт с особой электронной лампой – вакуумным диодом.

5 слайд

Графическое обозначение вакуумного диода Трехэлектродные ламп – триоды. Триод отличается от диода наличием третьего электрода – управляющей сетки, которая выполнена в виде проволочной спирали, размещенной в пространстве между катодом и анодом. Для уменьшения проходной емкости были созданы четырехэлектродные лампы – тетроды Диоды, Триоды, Тетроды

6 слайд

Применение Электрические токи в вакууме имеют широчайшую область применения. Это все без исключения радиолампы, ускорители заряженных частиц, масс-спектрометры, вакуумные генераторы СВЧ, такие как магнетроны, лампы бегущей волны и т.п. Лампа бегущей волны Радиолампа 1 - нить подогревателя катода; 2 - катод; 3 - управляющий электрод; 4 - ускоряющий электрод; 5 - первый анод; 6 - второй анод; 7 - проводящее покрытие (акводаг); 8 - катушки вертикального отклонения луча; 9 - катушки горизонтального отклонения луча; 10 - электронный луч; 11 - экран; 12 - вывод второго анода. Кинескоп