Единицы измерения плотности. Единицы измерения плотности Онлайн конвертеры объема

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 грамм на кубический сантиметр [г/см³] = 0,001 грамм на кубический миллиметр [г/мм³]

Исходная величина

Преобразованная величина

килограмм на кубический метр килограмм на кубический сантиметр грамм на кубический метр грамм на кубический сантиметр грамм на кубический миллиметр миллиграмм на кубический метр миллиграмм на кубический сантиметр миллиграмм на кубический миллиметр эксаграмм на литр петаграмм на литр тераграмм на литр гигаграмм на литр мегаграмм на литр килограмм на литр гектограмм на литр декаграмм на литр грамм на литр дециграмм на литр сантиграмм на литр миллиграмм на литр микрограмм на литр нанограмм на литр пикограмм на литр фемтограмм на литр аттограмм на литр фунт на кубический дюйм фунт на кубический фут фунт на кубический ярд фунт на галлон (США) фунт на галлон (брит.) унция на кубический дюйм унция на кубический фут унция на галлон (США) унция на галлон (брит.) гран на галлон (США) гран на галлон (брит.) гран на кубический фут короткая тонна на кубический ярд длинная тонна на кубический ярд слаг на кубический фут средняя плотность Земли слаг на кубический дюйм слаг на кубический ярд Планковская плотность

Подробнее о плотности

Общие сведения

Плотность - свойство, которое определяет какое количество вещества по массе приходится на единицу объема. В системе СИ плотность измеряют в кг/м³, но также используются и другие единицы, например г/см³, кг/л и другие. В обиходе наиболее часто используют две равнозначные величины: г/см³ и кг/мл.

Факторы, влияющие на плотность вещества

Плотность одного и того же вещества зависит от температуры и давления. Обычно, чем выше давление, тем более плотно утрамбованы молекулы, что увеличивает плотность. В большинстве случаев увеличение температуры, наоборот, увеличивает расстояние между молекулами и уменьшает плотность. В некоторых случаях эта зависимость - обратная. Плотность льда, например, меньше плотности воды, несмотря на то, что лед холоднее воды. Объяснить это можно молекулярной структурой льда. Многие вещества, при переходе от жидкого к твердому агрегатному состоянию меняют молекулярную структуру так, что расстояние между молекулами уменьшается, и плотность, соответственно, увеличивается. Во время образования льда, молекулы выстраиваются в кристаллическую структуру и расстояние между ними, наоборот, увеличивается. При этом притяжение между молекулами также изменяется, плотность уменьшается, а объем увеличивается. Зимой необходимо не забывать про это свойство льда - если вода в водопроводных трубах замерзает, то их может разорвать.

Плотность воды

Если плотность материала, из которого сделан предмет, больше плотности воды, то он полностью погружается в воду. Материалы с плотностью, меньшей, чем у воды, наоборот всплывают на поверхность. Хороший пример - лед с меньшей плотностью, чем вода, всплывающий в стакане на поверхность воды и других напитков, состоящих по большей части из воды. Мы часто используем это свойство веществ в повседневной жизни. Например, при конструировании корпусов судов используют материалы с плотностью выше плотности воды. Поскольку материалы с плотностью выше, чем плотность воды, тонут, в корпусе судна всегда создаются наполненные воздухом полости, так как плотность воздуха намного ниже плотности воды. С другой стороны, иногда необходимо, чтобы предмет тонул в воде - для этого выбирают материалы с большей плотностью, чем у воды. Например, чтобы погрузить на достаточную глубину легкую наживку во время рыбалки, рыболовы привязывают к леске грузило из материалов, имеющих высокую плотность, например свинца.

Масло, жир и нефть остаются на поверхности воды, так как их плотность ниже плотности воды. Благодаря этому свойству, пролитую в океане нефть намного легче убирать. Если бы она смешивалась с водой или опускалась на морское дно, она наносила бы еще больший урон морской экосистеме. В кулинарии также используют это свойство, но не нефти, конечно, а жира. Например, очень легко удалить лишний жир из супа, так как он всплывает на поверхность. Если суп охладить в холодильнике, то жир застывает, и его еще легче убрать с поверхности ложкой, шумовкой, или даже вилкой. Таким же способом его удаляют с холодца и заливного. Это уменьшает калорийность и содержание холестерина в продукте.

Информацию о плотности жидкостей используют и во время приготовления напитков. Многослойные коктейли делают из жидкостей разной плотности. Обычно жидкости с меньшей плотностью аккуратно наливают на жидкости более высокой плотности. Можно также использовать стеклянную палочку для коктейля или барную ложку и медленно наливать по ним жидкость. Если не спешить и делать все аккуратно, то получится красивый многослойный напиток. Этот способ можно также использовать с желе или заливными блюдами, хотя, если позволяет время, проще охладить каждый слой отдельно, наливая новый слой только после того, как нижний слой затвердел.

В некоторых случаях меньшая плотность жира, наоборот, мешает. Продукты с высоким содержанием жира часто плохо смешиваются с водой и образуют отдельный слой, ухудшая этим не только вид, но и вкус продукта. Например, в холодных десертах и фруктовых коктейлях жирные молочные продукты иногда отделяются от нежирных, таких как вода, лед и фрукты.

Плотность соленой воды

Плотность воды зависит от содержания в ней примесей. В природе и в быту редко встречается чистая вода H 2 O без примесей - чаще всего в ней содержатся соли. Хороший пример - морская вода. Ее плотность выше, чем у пресной, поэтому пресная вода обычно «плавает» на поверхности соленой воды. Конечно, увидеть это явление в обычных условиях сложно, но если пресная вода заключена в оболочку, например в резиновый шар, то это хорошо видно, так как этот шар всплывает на поверхность. Наше тело - тоже своего рода оболочка, наполненная пресной водой. Мы состоим из воды от 45% до 75% - этот процент уменьшается с возрастом и с увеличением веса и количества жира в организме. Содержание жира не менее 5% от массы тела. У здоровых людей в организме до 10% жира, если они много занимаются спортом, до 20%, если у них нормальный вес, и от 25% и выше, если они страдают ожирением.

Если мы попробуем не плыть, а просто держаться на поверхности воды, то заметим, что в соленой воде это делать проще, так как ее плотность выше плотности пресной воды и жира, содержащегося в нашем теле. Концентрация соли в Мертвом море в 7 раз превышает среднюю концентрацию соли в океанах мира, и оно известно по всему миру тем, что люди могут легко держаться на поверхности воды и не тонуть. Хотя, думать, что погибнуть в этом море невозможно - ошибочно. На самом деле каждый год в этом море погибают люди. Высокое содержание соли делает воду опасной, если она попадает в рот, нос, и в глаза. Если наглотаться такой воды, то можно получить химический ожог - в тяжелых случаях таких неудачливых пловцов госпитализируют.

Плотность воздуха

Также как и в случае с водой, тела с плотностью ниже плотности воздуха обладают положительной плавучестью, то есть взлетают. Хороший пример такого вещества - гелий. Его плотность равна 0,000178 г/см³, в то время как плотность воздуха приблизительно равна 0,001293 г/см³. Можно увидеть, как гелий взлетает в воздухе, если наполнить им воздушный шарик.

Плотность воздуха уменьшается по мере того, как увеличивается его температура. Это свойство горячего воздуха используют в воздушных шарах. Шар на фотографии в древнем городе Теотиуокан индейцев Майя в Мексике наполнен горячим воздухом, имеющим плотность меньше, чем плотность окружающего холодного утреннего воздуха. Именно поэтому шар летит на достаточно большой высоте. Пока шар пролетает над пирамидами, воздух в нем остывает, и его снова нагревают с помощью газовой горелки.

Вычисление плотности

Часто плотность веществ указывают для стандартных условий, то есть для температуры 0 °C и давления 100 кПа. В учебных и справочных пособиях обычно можно найти такую плотность для веществ, часто встречающихся в природе. Некоторые примеры приведены в таблице ниже. В некоторых случаях таблицы недостаточно и плотность необходимо вычислить вручную. В этом случае массу делят на объем тела. Массу легко найти с помощью весов. Чтобы узнать объем тела стандартной геометрической формы, можно использовать формулы для вычисления объема. Объем жидкостей и сыпучих веществ можно найти, наполнив веществом измерительную чашку. Для более сложных вычислений используют метод вытеснения жидкости.

Метод вытеснения жидкости

Для вычисления объема таким способом, сначала наливают определенное количество воды в мерный сосуд и помещают до полного погружения тело, объем которого необходимо вычислить. Объем тела равен разности объема воды без тела, и с ним. Считается, что это правило вывел Архимед. Измерить объем таким способом можно только в том случае, если тело не поглощает воду и не портится от воды. Например, мы не станем измерять методом вытеснения жидкости объем фотоаппарата или изделий из ткани.

Неизвестно, насколько эта легенда отражает реальные события, но считается, что царь Гиерон II дал Архимеду задание определить, сделана ли его корона из чистого золота. Царь подозревал, что его ювелир украл часть золота, выделенного на корону, и вместо этого сделал корону из более дешевого сплава. Архимед мог легко определить этот объем, расплавив корону, но царь приказал ему найти способ сделать это, не повредив короны. Считается, что Архимед нашел решение этой задачи, когда принимал ванну. Погрузившись в воду он заметил, что его тело вытеснило определенное количество воды, и понял, что объем вытесненной воды равен объему тела в воде.

Полые тела

Некоторые природные и искусственные материалы состоят из полых внутри частиц, или из частиц настолько маленьких, что эти вещества ведут себя как жидкости. Во втором случае, между частицами остается пустое место, заполненное воздухом, жидкостью, или другим веществом. Иногда это место оставаться пустым, то есть оно заполнено вакуумом. Пример таких веществ - песок, соль, зерно, снег и гравий. Объем таких материалов можно определить, измерив общий объем и вычтя из него определенный геометрическими вычислениями объем пустот. Этот способ удобен, если форма частиц более-менее однородна.

Для некоторых материалов количество пустого места зависит от того, насколько плотно утрамбованы частицы. Это усложняет вычисления, так как не всегда легко определить, сколько пустого места между частицами.

Таблица плотностей часто встречающихся в природе веществ

Вещество Плотность, г/см³
Жидкости
Вода при температуре 20 °C 0,998
Вода при температуре 4 °C 1,000
Бензин 0,700
Молоко 1,03
Ртуть 13,6
Твердые вещества
Лед при температуре 0°C 0,917
Магний 1,738
Алюминий 2,7
Железо 7,874
Медь 8,96
Свинец 11,34
Уран 19,10
Золото 19,30
Платина 21,45
Осмий 22,59
Газы при нормальных температуре и давлении
Водород 0,00009
Гелий 0,00018
Монооксид углерода 0,00125
Азот 0,001251
Воздух 0,001293
Углекислый газ 0,001977

Плотность и масса

В некоторых отраслях, например в авиации, необходимо использовать как можно более легкие материалы. Так как материалы низкой плотности также имеют низкую массу, в таких ситуациях стараются использовать материалы с наименьшей плотностью. Так, например, плотность алюминия всего 2,7 г/см³, в то время как плотность стали равна от 7,75 до 8,05 г/см³. Именно благодаря низкой плотности в 80% корпуса самолетов используют алюминий и его сплавы. Конечно, при этом стоит не забывать о прочности - сегодня мало кто делает самолеты из дерева, кожи, и других легких но малопрочных материалов.

Черные дыры

С другой стороны, чем выше масса вещества на данный объем - тем выше плотность. Черные дыры - пример физических тел с очень маленьким объемом и огромной массой, а соответственно - и огромной плотностью. Такое астрономическое тело поглощает свет и другие тела, находящиеся достаточно близко от него. Самые большие черные дыры называют сверхмассивными.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

Сегодня буровое ремесло является востребованным видом деятельности! Бурение применимо в различных областях: это поиск и добыча полезных ископаемых; изучение геологических свойств горных пород; производство взрывных работ; искусственное закрепление пород (цементация, замораживание, битумизация); осушение заболоченных районов; прокладка подземных коммуникаций; сооружение свайных фундаментов и многое другое.


Мировой прогресс движется семимильными шагами, и возможно скоро в нашу жизнь войдут другие источники энергии, помимо нефтепродуктов и газа. Поэтому откладывать добычу этих полезных ископаемых, значит отказываться от богатств, которые вскоре могут потерять свою цену.


Не секрет, что наша страна занимает ведущее место по добыче многих полезных ископаемых. Трудно переоценить тот вклад в экономику страны, а значит и в наше благополучие, который вносят буровики. Буровик – звучит сурово, но гордо! Буровики это люди работающие в сложных условиях, как правило, вдали от дома и семьи. Поэтому и поныне ремесло буровика считается наиболее оплачиваемым среди рабочих специальностей.


Достижения науки и техники, а также строгое соблюдение экологических требований сводят к минимуму отрицательное воздействие бурения на окружающую среду. Современная буровая – это комплекс сложнейших технических устройств и машин. При проектировании и изготовлении буровых установок основной уклон делается на безопасность и автоматизацию процесса бурения. Количество трудоемких операций сокращается, производительность труда растет. Как следствие, растет квалификация бурового персонала.


Бурение это не только буровая скважина, но и целый комплекс из многих служб обслуживающих буровую и управляющих её работой, среди них:

– буровая бригада во главе с начальником буровой;

– центральная инженерно-технологическая служба (ЦИТС);

– отдел главного механика;

– отдел главного энергетика;

– геологическая служба;

– вышкомонтажная служба;

– трубный участок;

– транспортный цех;

– снабжение и другие.


Совместный труд многих людей делает бурение возможным и эффективным.


Добро пожаловать на сайт о бурении!

Окружающие нас тела состоят из различных веществ: железа , дерева, резины и пр. Масса любого тела зависит не только от его размеров, но и от вещества, из которого оно состоит. Тела одинакового объема, состоящие из разных веществ, имеют разные массы. Например, взвесив два цилиндра из разных веществ - алюминия и свинца, увидим, что масса алюминиевого меньше массы свинцового цилиндра.

Вто же время, тела с одинаковыми массами, состоящие из разных веществ, имеют разные объемы . Так, железный брус массой 1 т занимает объем 0,13 м 3 , а лед массой 1 т - объем 1,1 м 3 . Объем льда почти в 9 раз больще объема железного бруса. То есть, разные вещества могут иметь разную плотность.

Отсюда следует, что тела с одинаковым объемом, состоящие из разных веществ, имеют разные массы.

Плотность показывает, чему равна масса вещества, взятого в определенном объеме. То есть, если известна масса тела и его объем, можно определить плотность. Чтобы найти плотность вещества, надо массу тела разделить на его объем.

Плотность одного и того же вещества в твердом, жидком и газообразном состояниях различна.

Плотность некоторых твердых тел, жидкостей и газов приведена в таблицах.

Плотности некоторых твердых тел (при норм. атм. давл., t = 20 ° C).

Твердое тело

ρ , кг/м 3

ρ , г/см 3

Твердое тело

ρ , кг/м 3

ρ , г/см 3

Стекло оконное

Сосна (сухая)

Оргстекло

Сахар-рафинад

Полиэтилен

Дуб (сухой)

Плотности некоторых жидкостей (при норм. атм. давл. t =20 ° C).

Жидкость

ρ , кг/м 3

ρ , г/см 3

Жидкость

ρ , кг/м 3

ρ , г/см 3

Вода чистая

Молоко цельное

Масло подсолнечное

Жидкое олово (при t = 400 ° C )

Масло машинное

Жидкий воздух (при t = -194 ° C )

Конвертер длины и расстояния Конвертер массы Конвертер мер объема сыпучих продуктов и продуктов питания Конвертер площади Конвертер объема и единиц измерения в кулинарных рецептах Конвертер температуры Конвертер давления, механического напряжения, модуля Юнга Конвертер энергии и работы Конвертер мощности Конвертер силы Конвертер времени Конвертер линейной скорости Плоский угол Конвертер тепловой эффективности и топливной экономичности Конвертер чисел в различных системах счисления Конвертер единиц измерения количества информации Курсы валют Размеры женской одежды и обуви Размеры мужской одежды и обуви Конвертер угловой скорости и частоты вращения Конвертер ускорения Конвертер углового ускорения Конвертер плотности Конвертер удельного объема Конвертер момента инерции Конвертер момента силы Конвертер вращающего момента Конвертер удельной теплоты сгорания (по массе) Конвертер плотности энергии и удельной теплоты сгорания топлива (по объему) Конвертер разности температур Конвертер коэффициента теплового расширения Конвертер термического сопротивления Конвертер удельной теплопроводности Конвертер удельной теплоёмкости Конвертер энергетической экспозиции и мощности теплового излучения Конвертер плотности теплового потока Конвертер коэффициента теплоотдачи Конвертер объёмного расхода Конвертер массового расхода Конвертер молярного расхода Конвертер плотности потока массы Конвертер молярной концентрации Конвертер массовой концентрации в растворе Конвертер динамической (абсолютной) вязкости Конвертер кинематической вязкости Конвертер поверхностного натяжения Конвертер паропроницаемости Конвертер плотности потока водяного пара Конвертер уровня звука Конвертер чувствительности микрофонов Конвертер уровня звукового давления (SPL) Конвертер уровня звукового давления с возможностью выбора опорного давления Конвертер яркости Конвертер силы света Конвертер освещённости Конвертер разрешения в компьютерной графике Конвертер частоты и длины волны Оптическая сила в диоптриях и фокусное расстояние Оптическая сила в диоптриях и увеличение линзы (×) Конвертер электрического заряда Конвертер линейной плотности заряда Конвертер поверхностной плотности заряда Конвертер объемной плотности заряда Конвертер электрического тока Конвертер линейной плотности тока Конвертер поверхностной плотности тока Конвертер напряжённости электрического поля Конвертер электростатического потенциала и напряжения Конвертер электрического сопротивления Конвертер удельного электрического сопротивления Конвертер электрической проводимости Конвертер удельной электрической проводимости Электрическая емкость Конвертер индуктивности Конвертер Американского калибра проводов Уровни в dBm (дБм или дБмВт), dBV (дБВ), ваттах и др. единицах Конвертер магнитодвижущей силы Конвертер напряженности магнитного поля Конвертер магнитного потока Конвертер магнитной индукции Радиация. Конвертер мощности поглощенной дозы ионизирующего излучения Радиоактивность. Конвертер радиоактивного распада Радиация. Конвертер экспозиционной дозы Радиация. Конвертер поглощённой дозы Конвертер десятичных приставок Передача данных Конвертер единиц типографики и обработки изображений Конвертер единиц измерения объема лесоматериалов Вычисление молярной массы Периодическая система химических элементов Д. И. Менделеева

1 килограмм на кубический метр [кг/м³] = 1 грамм на литр [г/л]

Исходная величина

Преобразованная величина

килограмм на кубический метр килограмм на кубический сантиметр грамм на кубический метр грамм на кубический сантиметр грамм на кубический миллиметр миллиграмм на кубический метр миллиграмм на кубический сантиметр миллиграмм на кубический миллиметр эксаграмм на литр петаграмм на литр тераграмм на литр гигаграмм на литр мегаграмм на литр килограмм на литр гектограмм на литр декаграмм на литр грамм на литр дециграмм на литр сантиграмм на литр миллиграмм на литр микрограмм на литр нанограмм на литр пикограмм на литр фемтограмм на литр аттограмм на литр фунт на кубический дюйм фунт на кубический фут фунт на кубический ярд фунт на галлон (США) фунт на галлон (брит.) унция на кубический дюйм унция на кубический фут унция на галлон (США) унция на галлон (брит.) гран на галлон (США) гран на галлон (брит.) гран на кубический фут короткая тонна на кубический ярд длинная тонна на кубический ярд слаг на кубический фут средняя плотность Земли слаг на кубический дюйм слаг на кубический ярд Планковская плотность

Подробнее о плотности

Общие сведения

Плотность - свойство, которое определяет какое количество вещества по массе приходится на единицу объема. В системе СИ плотность измеряют в кг/м³, но также используются и другие единицы, например г/см³, кг/л и другие. В обиходе наиболее часто используют две равнозначные величины: г/см³ и кг/мл.

Факторы, влияющие на плотность вещества

Плотность одного и того же вещества зависит от температуры и давления. Обычно, чем выше давление, тем более плотно утрамбованы молекулы, что увеличивает плотность. В большинстве случаев увеличение температуры, наоборот, увеличивает расстояние между молекулами и уменьшает плотность. В некоторых случаях эта зависимость - обратная. Плотность льда, например, меньше плотности воды, несмотря на то, что лед холоднее воды. Объяснить это можно молекулярной структурой льда. Многие вещества, при переходе от жидкого к твердому агрегатному состоянию меняют молекулярную структуру так, что расстояние между молекулами уменьшается, и плотность, соответственно, увеличивается. Во время образования льда, молекулы выстраиваются в кристаллическую структуру и расстояние между ними, наоборот, увеличивается. При этом притяжение между молекулами также изменяется, плотность уменьшается, а объем увеличивается. Зимой необходимо не забывать про это свойство льда - если вода в водопроводных трубах замерзает, то их может разорвать.

Плотность воды

Если плотность материала, из которого сделан предмет, больше плотности воды, то он полностью погружается в воду. Материалы с плотностью, меньшей, чем у воды, наоборот всплывают на поверхность. Хороший пример - лед с меньшей плотностью, чем вода, всплывающий в стакане на поверхность воды и других напитков, состоящих по большей части из воды. Мы часто используем это свойство веществ в повседневной жизни. Например, при конструировании корпусов судов используют материалы с плотностью выше плотности воды. Поскольку материалы с плотностью выше, чем плотность воды, тонут, в корпусе судна всегда создаются наполненные воздухом полости, так как плотность воздуха намного ниже плотности воды. С другой стороны, иногда необходимо, чтобы предмет тонул в воде - для этого выбирают материалы с большей плотностью, чем у воды. Например, чтобы погрузить на достаточную глубину легкую наживку во время рыбалки, рыболовы привязывают к леске грузило из материалов, имеющих высокую плотность, например свинца.

Масло, жир и нефть остаются на поверхности воды, так как их плотность ниже плотности воды. Благодаря этому свойству, пролитую в океане нефть намного легче убирать. Если бы она смешивалась с водой или опускалась на морское дно, она наносила бы еще больший урон морской экосистеме. В кулинарии также используют это свойство, но не нефти, конечно, а жира. Например, очень легко удалить лишний жир из супа, так как он всплывает на поверхность. Если суп охладить в холодильнике, то жир застывает, и его еще легче убрать с поверхности ложкой, шумовкой, или даже вилкой. Таким же способом его удаляют с холодца и заливного. Это уменьшает калорийность и содержание холестерина в продукте.

Информацию о плотности жидкостей используют и во время приготовления напитков. Многослойные коктейли делают из жидкостей разной плотности. Обычно жидкости с меньшей плотностью аккуратно наливают на жидкости более высокой плотности. Можно также использовать стеклянную палочку для коктейля или барную ложку и медленно наливать по ним жидкость. Если не спешить и делать все аккуратно, то получится красивый многослойный напиток. Этот способ можно также использовать с желе или заливными блюдами, хотя, если позволяет время, проще охладить каждый слой отдельно, наливая новый слой только после того, как нижний слой затвердел.

В некоторых случаях меньшая плотность жира, наоборот, мешает. Продукты с высоким содержанием жира часто плохо смешиваются с водой и образуют отдельный слой, ухудшая этим не только вид, но и вкус продукта. Например, в холодных десертах и фруктовых коктейлях жирные молочные продукты иногда отделяются от нежирных, таких как вода, лед и фрукты.

Плотность соленой воды

Плотность воды зависит от содержания в ней примесей. В природе и в быту редко встречается чистая вода H 2 O без примесей - чаще всего в ней содержатся соли. Хороший пример - морская вода. Ее плотность выше, чем у пресной, поэтому пресная вода обычно «плавает» на поверхности соленой воды. Конечно, увидеть это явление в обычных условиях сложно, но если пресная вода заключена в оболочку, например в резиновый шар, то это хорошо видно, так как этот шар всплывает на поверхность. Наше тело - тоже своего рода оболочка, наполненная пресной водой. Мы состоим из воды от 45% до 75% - этот процент уменьшается с возрастом и с увеличением веса и количества жира в организме. Содержание жира не менее 5% от массы тела. У здоровых людей в организме до 10% жира, если они много занимаются спортом, до 20%, если у них нормальный вес, и от 25% и выше, если они страдают ожирением.

Если мы попробуем не плыть, а просто держаться на поверхности воды, то заметим, что в соленой воде это делать проще, так как ее плотность выше плотности пресной воды и жира, содержащегося в нашем теле. Концентрация соли в Мертвом море в 7 раз превышает среднюю концентрацию соли в океанах мира, и оно известно по всему миру тем, что люди могут легко держаться на поверхности воды и не тонуть. Хотя, думать, что погибнуть в этом море невозможно - ошибочно. На самом деле каждый год в этом море погибают люди. Высокое содержание соли делает воду опасной, если она попадает в рот, нос, и в глаза. Если наглотаться такой воды, то можно получить химический ожог - в тяжелых случаях таких неудачливых пловцов госпитализируют.

Плотность воздуха

Также как и в случае с водой, тела с плотностью ниже плотности воздуха обладают положительной плавучестью, то есть взлетают. Хороший пример такого вещества - гелий. Его плотность равна 0,000178 г/см³, в то время как плотность воздуха приблизительно равна 0,001293 г/см³. Можно увидеть, как гелий взлетает в воздухе, если наполнить им воздушный шарик.

Плотность воздуха уменьшается по мере того, как увеличивается его температура. Это свойство горячего воздуха используют в воздушных шарах. Шар на фотографии в древнем городе Теотиуокан индейцев Майя в Мексике наполнен горячим воздухом, имеющим плотность меньше, чем плотность окружающего холодного утреннего воздуха. Именно поэтому шар летит на достаточно большой высоте. Пока шар пролетает над пирамидами, воздух в нем остывает, и его снова нагревают с помощью газовой горелки.

Вычисление плотности

Часто плотность веществ указывают для стандартных условий, то есть для температуры 0 °C и давления 100 кПа. В учебных и справочных пособиях обычно можно найти такую плотность для веществ, часто встречающихся в природе. Некоторые примеры приведены в таблице ниже. В некоторых случаях таблицы недостаточно и плотность необходимо вычислить вручную. В этом случае массу делят на объем тела. Массу легко найти с помощью весов. Чтобы узнать объем тела стандартной геометрической формы, можно использовать формулы для вычисления объема. Объем жидкостей и сыпучих веществ можно найти, наполнив веществом измерительную чашку. Для более сложных вычислений используют метод вытеснения жидкости.

Метод вытеснения жидкости

Для вычисления объема таким способом, сначала наливают определенное количество воды в мерный сосуд и помещают до полного погружения тело, объем которого необходимо вычислить. Объем тела равен разности объема воды без тела, и с ним. Считается, что это правило вывел Архимед. Измерить объем таким способом можно только в том случае, если тело не поглощает воду и не портится от воды. Например, мы не станем измерять методом вытеснения жидкости объем фотоаппарата или изделий из ткани.

Неизвестно, насколько эта легенда отражает реальные события, но считается, что царь Гиерон II дал Архимеду задание определить, сделана ли его корона из чистого золота. Царь подозревал, что его ювелир украл часть золота, выделенного на корону, и вместо этого сделал корону из более дешевого сплава. Архимед мог легко определить этот объем, расплавив корону, но царь приказал ему найти способ сделать это, не повредив короны. Считается, что Архимед нашел решение этой задачи, когда принимал ванну. Погрузившись в воду он заметил, что его тело вытеснило определенное количество воды, и понял, что объем вытесненной воды равен объему тела в воде.

Полые тела

Некоторые природные и искусственные материалы состоят из полых внутри частиц, или из частиц настолько маленьких, что эти вещества ведут себя как жидкости. Во втором случае, между частицами остается пустое место, заполненное воздухом, жидкостью, или другим веществом. Иногда это место оставаться пустым, то есть оно заполнено вакуумом. Пример таких веществ - песок, соль, зерно, снег и гравий. Объем таких материалов можно определить, измерив общий объем и вычтя из него определенный геометрическими вычислениями объем пустот. Этот способ удобен, если форма частиц более-менее однородна.

Для некоторых материалов количество пустого места зависит от того, насколько плотно утрамбованы частицы. Это усложняет вычисления, так как не всегда легко определить, сколько пустого места между частицами.

Таблица плотностей часто встречающихся в природе веществ

Вещество Плотность, г/см³
Жидкости
Вода при температуре 20 °C 0,998
Вода при температуре 4 °C 1,000
Бензин 0,700
Молоко 1,03
Ртуть 13,6
Твердые вещества
Лед при температуре 0°C 0,917
Магний 1,738
Алюминий 2,7
Железо 7,874
Медь 8,96
Свинец 11,34
Уран 19,10
Золото 19,30
Платина 21,45
Осмий 22,59
Газы при нормальных температуре и давлении
Водород 0,00009
Гелий 0,00018
Монооксид углерода 0,00125
Азот 0,001251
Воздух 0,001293
Углекислый газ 0,001977

Плотность и масса

В некоторых отраслях, например в авиации, необходимо использовать как можно более легкие материалы. Так как материалы низкой плотности также имеют низкую массу, в таких ситуациях стараются использовать материалы с наименьшей плотностью. Так, например, плотность алюминия всего 2,7 г/см³, в то время как плотность стали равна от 7,75 до 8,05 г/см³. Именно благодаря низкой плотности в 80% корпуса самолетов используют алюминий и его сплавы. Конечно, при этом стоит не забывать о прочности - сегодня мало кто делает самолеты из дерева, кожи, и других легких но малопрочных материалов.

Черные дыры

С другой стороны, чем выше масса вещества на данный объем - тем выше плотность. Черные дыры - пример физических тел с очень маленьким объемом и огромной массой, а соответственно - и огромной плотностью. Такое астрономическое тело поглощает свет и другие тела, находящиеся достаточно близко от него. Самые большие черные дыры называют сверхмассивными.

Вы затрудняетесь в переводе единицы измерения с одного языка на другой? Коллеги готовы вам помочь. Опубликуйте вопрос в TCTerms и в течение нескольких минут вы получите ответ.

*..1..* В таблице 2 дана плотность редкого металла осмия, равная 22600 кг/м 3 .Что это означает?

*..2..* Пользуясь таблицами плотностей (табл. присутствуют) , определите, плотность какого вещества больше:цинка или серебра;бетона или мрамора;бензина или спирта.

*..3..* Три кубика - из мрамора, льда и латуни имеют одинаковый объем. Какой из них имеет наибольшую массу, какой - наименьшую?

*..4..* Самое легкое дерево - бальза. Масса его древесины объемом 100 см3 равна 12 г. Вычислите плотность древесины бальзы в г/см3 и в кг/м3.

1. Почему молекулы газов не падают на Землю? 2. На какой глубине давление воды в море равно 412 кПа. Плотность морской воды 1030 кг/м3.

3. Справедлив ли закон сообщающихся сосудов невесомости?

4.На столе стоит сплошкой медный куб. Какова масса куба, если он оказывает на стол давление 8 кПа? Плотность меди 8900 кг/м3.

5. Какой груз понимает плот из 10 бревен объемом 0,6 м3 каждое, если плотность дерева 700 кг/м3 ?

6. Почему многие водоросли располагаются в воде вертикально, несмотря на то, что они имеют мягкие стебли?

7. Что такой водоизмещение судна?

1.кусок гранита объемом 10 дм3 погружён в воду.какую силу необходимо приложить,чтобы удержать его в воде?(плотность воды 1000кг/м3 ,гранита 2600 кг/м3

2.брусок,имеющий форму прямоугольного параллелепипеда,опустили в бензин.Размеры бруска 4*5*10см.Определите выталкивающую силу,действующую на брусок(плотность бензина 710кг/м3)
3.В сосуды ртутью поместили алюминиевый
1,стальной 2 и платиновый 3 шарика одинакового объема.Сделайте рисунок,на катодом изобразите приблизительное расположение шариков в ртути после того,как они перестанут перемещаться.(Плотность ртути 13600кг/м3,алюминия 2700 кг/м3, стали 7800 кг/м3,платины 21500кг/м3)
Помогите пожайлустааааа

1. Удельная теплота плавления льда 334 кДж/кг. Какой мощности нагреватель нужен для расплавления 6 кг льда, за 10 минут при температуре 0 ° t.

а) 12 024 кВ.
б) 200,4 кВ
в) 30, 340 В
г) 2000 В
д) 3,34 В
2. Найти мощность при напряжении 200 В и сила тока 2 ампер.
а) 100 В
б) 400 В
в) 0,01 В
г) 4 кВ
д) 1 кВ
3. Какое количество теплоты выделится в пробочной спирали со сопративлением 20 Ом, сила тока 5 ампер, 10° t.
а) 50 000 Дж
б) 10 000 Дж
в) 2 500 Дж
г) 2 000 Дж
д) 500 Дж.
4. Какое количество теплоты необходимо для изменения температуры куска свинца м=20 кг, от 20° t до 120° t.
а) 700 Дж
б) 2,8*10 в 3 степени Дж
в) 1,4*10 в 4 степени Дж
г) 2,8*10 в 5 степени Дж.
5. Какое количество теплоты необходимо для превращения 5 кг эфира в пар при температуры кипения 0,4*10 в 6 степени Дж/кг.
а)1,25*10 в степени -5 Дж
б) 2*10 в 6 степени Дж
в) 0,4*10 в 6 степени Дж
г) 8*10 в 4 степени Дж
6. На плавущий мяч действует сила тяжести 5 Н, определить приталкивающую силу.
а) 0
б) 5 Н
в) 50 Н
г) 0,2 Н
д) 2,5 Н