Наименьшее и наибольшее значения функции на отрезке. Наибольшее и наименьшее значения функции двух переменных в замкнутой области Найти наибольшее или наименьшее значение функции

Наибольшим значением функции называется самое большее, наименьшим значением – самое меньшее из всех ее значений.

Функция может иметь только одно наибольшее и только одно наименьшее значение или может не иметь их совсем. Нахождение наибольшего и наименьшего значений непрерывных функций основывается на следующих свойствах этих функций:

1) Если в некотором интервале (конечном или бесконечном) функция y=f(x) непрерывна и имеет только один экстремум и если это максимум (минимум), то он будет наибольшим (наименьшим) значением функции в этом интервале.

2) Если функция f(x) непрерывна на некотором отрезке , то она обязательно имеет на этом отрезке наибольшее и наименьшее значения. Эти значения достигаются ее или в точках экстремума, лежащих внутри отрезка, или на границах этого отрезка.

Для отыскания наибольшего и наименьшего значений на отрезке рекомендуется пользоваться следующей схемой:

1. Найти производную .

2. Найти критические точки функции, в которых =0 или не существует.

3. Найти значения функции в критических точках и на концах отрезка и выбрать из них наибольшее f наиб и наименьшее f наим.

При решении прикладных задач, в частности оптимизационных, важное значение имеют задачи на нахождение наибольшего и наименьшего значений (глобального максимума и глобального минимума) функции на промежутке Х. Для решения таких задач следует, исходя из условия, выбрать независимую переменную и выразить исследуемую величину через эту переменную. Затем найти искомое наибольшее или наименьшее значение полученной функции. При этом интервал изменения независимой переменной, который может быть конечным или бесконечным, также определяется из условия задачи.

Пример. Резервуар, имеющий форму открытого сверху прямоугольного параллелепипеда с квадратным дном, нужно вылудить внутри оловом. Каковы должны быть размеры резервуара при его емкости 108 л. воды, чтобы затраты на его лужение были наименьшими?

Решение. Затраты на покрытие резервуара оловом будут наименьшими, если при данной вместимости его поверхность будет минимальной. Обозначим через а дм – сторону основания, b дм – высоту резервуара. Тогда площадь S его поверхности равна

И

Полученное соотношение устанавливает зависимость между площадью поверхности резервуара S (функция) и стороной основания а (аргумент). Исследуем функцию S на экстремум. Найдем первую производную , приравняем ее к нулю и решим полученное уравнение:

Отсюда а = 6. (а) > 0 при а > 6, (а) < 0 при а < 6. Следовательно, при а = 6 функция S имеет минимум. Если а = 6, то b = 3. Таким образом, затраты на лужение резервуара емкостью 108 литров будут наименьшими, если он имеет размеры 6дм х 6дм х 3дм.

Пример . Найти наибольшее и наименьшее значения функции на промежутке .

Решение : Заданная функция непрерывна на всей числовой оси. Производная функции

Производная при и при . Вычислим значения функции в этих точках:

.

Значения функции на концах заданного промежутка равны . Следовательно, наибольшее значение функции равно при , наименьшее значение функции равно при .

Вопросы для самопроверки

1. Сформулируйте правило Лопиталя для раскрытия неопределенностей вида . Перечислите различные типы неопределенностей, для раскрытия которых может быть использовано правило Лопиталя.

2. Сформулируйте признаки возрастания и убывания функции.

3. Дайте определение максимума и минимума функции.

4. Сформулируйте необходимое условие существования экстремума.

5. Какие значения аргумента (какие точки) называются критическими? Как найти эти точки?

6. Каковы достаточные признаки существования экстремума функции? Изложите схему исследования функции на экстремум с помощью первой производной.

7. Изложите схему исследования функции на экстремум с помощью второй производной.

8. Дайте определение выпуклости, вогнутости кривой.

9. Что называется точкой перегиба графика функции? Укажите способ нахождения этих точек.

10. Сформулируйте необходимый и достаточный признаки выпуклости и вогнутости кривой на заданном отрезке.

11. Дайте определение асимптоты кривой. Как найти вертикальные, горизонтальные и наклонные асимптоты графика функции?

12. Изложите общую схему исследования функции и построения ее графика.

13. Сформулируйте правило нахождения наибольшего и наименьшего значений функции на заданном отрезке.

Нередко приходится решать задачи, в которых необходимо найти наибольшее или наименьшее значения из совокупности тех значений, которые на отрезке принимает функция.

Обратимся, например, к графику функции f(х) = 1 + 2х 2 – х 4 на отрезке [-1; 2]. Для работы с функцией нам необходимо построить ее график.

Из построенного графика видно, что наибольшее значение на этом отрезке, равное 2, функция принимает в точках: х = -1 и х = 1; наименьшее значение, равное -7, функция принимает при х = 2.

Точка х = 0 является точкой минимума функции f(х) = 1 + 2х 2 – х 4 . Это значит, что существует окрестность точки х = 0, например, интервал (-1/2; 1/2) – такая, что в этой окрестности наименьшее значение функция принимает при х = 0. Однако на большем промежутке, например, на отрезке [-1; 2], наименьшее значение функция принимает на конце отрезка, а не в точке минимума.

Таким образом, чтобы найти наименьшее значения функции на определенном отрезке, необходимо сравнить ее значения на концах отрезка и в точках минимума.

В целом предположим, что функция f(х) непрерывная на отрезке и что функция имеет производную в каждой внутренней точке этого отрезка.

Чтобы на отрезке найти наибольшее и наименьшее значения функции, необходимо:

1) найти значения функции в концах отрезка, т.е. числа f(а) и f(b);

2) найти значения функции в стационарных точках, которые принадлежат интервалу (a; b);

3) выбрать из найденных значений наибольшее и наименьшее.

Применим полученные знания на практике и рассмотрим задачу.

Найти наибольшее и наименьшее значения функции f(х) = х 3 + х/3 на отрезке .

Решение.

1) f(1/2) = 6 1/8, f(2) = 9 ½.

2) f´(х) = 3х 2 – 3/х 2 = (3х 4 – 3)/х 2 , 3х 4 – 3 = 0; х 1 = 1, х 2 = -1.

Интервалу (1/2; 2) принадлежит одна стационарная точка х 1 = 1, f(1) = 4.

3) Из чисел 6 1/8, 9 ½ и 4 наибольшее 9 ½, наименьшее 4.

Ответ. Наибольшее значение функции равно 9 ½, наименьшее значение функции равно 4.

Часто при решении задач необходимо найти наибольшее и наименьшее значение функции не на отрезке, а на интервале.

В практических задачах обычно функция f(х) имеет на заданном интервале лишь одну стационарную точку: или точку максимума, или точку минимума. В этих случаях функция f(х) принимает наибольшее значение на данном интервале в точке максимума, а в точке минимума – наименьшее значение на данном интервале. Обратимся к задаче.

Число 36 записать в виде произведения двух положительных чисел, сумма которых наименьшая.

Решение.

1) Пусть первый множитель равен х, тогда второй множитель равен 36/х.

2) Сумма этих чисел равна х + 36/х.

3) По условия задачи х – положительное число. Итак, задача сводится к нахождению значения х – такого, при котором функция f(х) = х + 36/х принимает наименьшее значение на интервале х > 0.

4) Найдем производную: f´(х) = 1 – 36/х 2 =((х + 6)(х – 6)) / х 2 .

5) Стационарные точки х 1 = 6, х 2 = -6. На интервале х > 0 есть только одна стационарная точка х = 6. При переходе через точку х = 6 производная меняет знак «–» на знак «+», и поэтому х = 6 – точка минимума. Следовательно, наименьшее значение на интервале х > 0 функция f(х) = х + 36/х принимает в точке х = 6 (это значение f(6) = 12).

Ответ. 36 = 6 ∙ 6.

При решении некоторых задач, где необходимо найти наибольшее и наименьшее значения функции, полезно использовать следующее утверждение:

если значения функции f(х) на некотором промежутке неотрицательны, то эта функция и функция (f(х)) n , где n – натуральное число, принимают наибольшее (наименьшее) значение в одной и той же точке.

сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Пусть функция у = f (х) непрерывна на отрезке [a, b ]. Как известно, такая функция на этом отрезке достигает наибольшего и наименьшего значений. Эти значения функция может принять либо во внутренней точке отрезка [a, b ], либо на границе отрезка.

Для нахождения наибольшего и наименьшего значений функции на отрезке [a, b ] необходимо:

1)найти критические точки функции в интервале (a, b );

2)вычислить значения функции в найденных критических точках;

3) вычислить значения функции на концах отрезка, то есть при x = а и х = b ;

4)из всех вычисленных значений функции выбрать наибольшее и наименьшее.

Пример. Найти наибольшее и наименьшее значения функции

на отрезке .

Находим критические точки:

Эти точки лежат внутри отрезка ; y (1) = ‒ 3; y (2) = ‒ 4; y (0) = ‒ 8; y (3) = 1;

в точке x = 3 и в точкеx = 0.

Исследование функции на выпуклость и точку перегиба.

Функция y = f (x ) называется выпуклойвверх на промежутке (a , b ) , если ее график лежит под касательной, проведенной в любой точке этого промежутка, и называется выпуклой вниз (вогнутой) , если ее график лежит над касательной.

Точка, при переходе через которую выпуклость сменяется вогнутостью или наоборот, называется точкой перегиба .

Алгоритм исследования на выпуклость и точку перегиба:

1. Найдеми критические точки второго рода, то есть точки в которых вторая производная равна нулю или не существует.

2. Нанести критические точки на числовую прямую, разбивая ее на промежутки. Найти знак второй производной на каждом промежутке; если , то функция выпуклая вверх, если, то функция выпуклая вниз.

3. Если при переходе через критическую точку второго рода поменяет знак и в этой точке вторая производная равна нулю, то эта точка ‒ абсцисса точки перегиба. Найти ее ординату.

Асимптоты графика функции. Исследование функции на асимптоты.

Определение. Асимптотой графика функции называется прямая , обладающая тем свойством, что расстояние от любой точки графика до этой прямой стремится к нулю при неограниченном удалении точки графика от начала координат.

Существуют три вида асимптот: вертикальные, горизонтальные и наклонные.

Определение. Прямая называетсявертикальной асимптотой графика функции у = f (х) , если хотя бы один из односторонних пределов функции в этой точке равен бесконечности, то есть

где ‒ точка разрыва функции, то естьне принадлежит области определения.

Пример.

D (y ) = (‒ ∞; 2) (2; + ∞)

x = 2 ‒ точка разрыва.

Определение. Прямая у = A называется горизонтальной асимптотой графика функции у = f(х) при , если

Пример.

x

y

Определение. Прямая у = k х + b (k ≠ 0) называется наклонной асимптотой графика функции у = f (х) при , где

Общая схема исследования функций и построения графиков.

Алгоритм исследования функции у = f (х) :

1. Найти область определения функцииD (y ).

2. Найти (если это можно) точки пересечения графика с осями координат (при x = 0 и при y = 0).

3. Исследовать на четность и нечетность функции(y (x ) = y (x ) четность; y (x ) = y (x ) нечетность).

4. Найти асимптоты графика функции.

5. Найти интервалы монотонности функции.

6. Найти экстремумы функции.

7. Найти интервалы выпуклости (вогнутости) и точки перегиба графика функции.

8. На основании проведенных исследований построить график функции.

Пример. Исследовать функцию и построить ее график.

1) D (y ) =

x = 4 ‒ точка разрыва.

2) При x = 0,

(0; ‒ 5) ‒ точка пересечения с oy .

При y = 0,

3) y (x )= функция общего вида (ни четная, ни нечетная).

4) Исследуем на асимптоты.

а) вертикальные

б) горизонтальные

в) найдем наклонные асимптоты где

‒уравнение наклонной асимптоты

5) В данном уравнении не требуется найти интервалы монотонности функции.

6)

Эти критические точки разбивают всю область определения функции на интервале (˗∞; ˗2), (˗2; 4), (4; 10)и (10; +∞). Полученные результаты удобно представить в виде следующей таблицы:

нет экстр.

Из таблицы видно, что точках = ‒2‒точка максимума, в точкех = 4‒нет экстремума, х = 10 ‒точка минимума.

Подставим значение (‒ 3) в уравнение:

9 + 24 ‒ 20 > 0

25 ‒ 40 ‒ 20 < 0

121 ‒ 88 ‒ 20 > 0

Максимум этой функции равен

(‒ 2; ‒ 4) ‒ экстремум максимальный.

Минимум этой функции равен

(10; 20) ‒ экстремум минимальный.

7) исследуем на выпуклость и точку перегиба графика функции


Наибольшее и наименьшее значения функции

понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке множества функция не имеет большего (меньшего) значения. Н. и н. з. ф. по сравнению с её значениями во всех достаточно близких точках называются экстремумами (соответственно максимумами и минимумами) функции. Н. и н. з. ф., заданной на отрезке, могут достигаться либо в точках, где производная равна нулю, либо в точках, где она не существует, либо на концах отрезка. Непрерывная функция, заданная на отрезке, обязательно достигает на нём наибольшего и наименьшего значений; если же непрерывную функцию рассматривать на интервале (т. е. отрезке с исключенными концами), то среди её значений на этом интервале может не оказаться наибольшего или наименьшего. Например, функция у = x , заданная на отрезке , достигает наибольшего и наименьшего значений соответственно при x = 1 и x = 0 (т. е. на концах отрезка); если же рассматривать эту функцию на интервале (0; 1), то среди её значений на этом интервале нет ни наибольшего, ни наименьшего, так как для каждого x 0 всегда найдётся точка этого интервала, лежащая правее (левее) x 0 , и такая, что значение функции в этой точке будет больше (соответственно меньше), чем в точке x 0 . Аналогичные утверждения справедливы для функций многих переменных. См. также Экстремум .


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Смотреть что такое "Наибольшее и наименьшее значения функции" в других словарях:

    Большой Энциклопедический словарь

    Понятия математического анализа. Значение, принимаемое функцией в некоторой точке множества, на котором эта функция задана, называется наибольшим (наименьшим) на этом множестве, если ни в какой другой точке функция не имеет большего (меньшего)… … Энциклопедический словарь

    Понятия матем. анализа. Значение, принимаемое функцией в пек рой точке множества, па к ром эта функция задана, наз. наибольшим (наименьшим) на этом множестве, если ни в какой другой точке функция не имеет большего (меньшего) значения … Естествознание. Энциклопедический словарь

    МАКСИМУМ И МИНИМУМ ФУНКЦИИ - соответственно наибольшее и наименьшее значения функции по сравнению с её значениями во всех достаточно близких точках. Точки максимума и минимума называются точками экстремума … Большая политехническая энциклопедия

    Наибольшее и соответственно наименьшее значения функции, принимающей действительные значения. Точку области определения рассматриваемой функции, в к рой она принимает максимум или минимум, наз. соответственно точкой максимума или точкой минимума… … Математическая энциклопедия

    Троичной функцией в теории функциональных систем и троичной логике называют функцию типа, где троичное множество, а неотрицательное целое число, которое называют арностью или местностью функции. Элементы множества цифровые… … Википедия

    Представление булевых функций нормальными формами (см. Булевых функций нормальные формы). простейшими относительно нек рой меры сложности. Обычно под сложностью нормальной формы понимается число букв в ней. В этом случае простейшая форма наз.… … Математическая энциклопедия

    Функция, получающая бесконечно малые приращения при бесконечно малых приращениях аргумента. Однозначная функция f (x) называется непрерывной при значении аргумента x0, если для всех значений аргумента х, отличающихся достаточно мало от x0 … Большая советская энциклопедия

    - (лат. maximum и minimum, буквально наибольшее и наименьшее) (матем.), наибольшее и наименьшее значения функции по сравнению с её значениями в достаточно близких точках. На рисунке функция у = f(х) имеет в точках x1 и х3 максимум, а в точке х2 … … Энциклопедический словарь

    - (от латинского maximum и minimum наибольшее и наименьшее) (математическое), наибольшее и наименьшее значения функции по сравнению с ее значениями в достаточно близких точках. Точки максимума и минимума называются точками экстремума … Современная энциклопедия

В задании B14 из ЕГЭ по математике требуется найти наименьшее или наибольшее значение функции одной переменной. Это достаточно тривиальная задача из математического анализа, и именно по этой причине научиться решать её в норме может и должен каждый выпускник средней школы. Разберём несколько примеров, которые школьники решали на диагностической работе по математике, прошедшей в Москве 7 декабря 2011 года.

В зависимости от промежутка, на котором требуется найти максимальное или минимальное значение функции, для решения этой задачи используется один из следующих стандартных алгоритмов.

I. Алгоритм нахождения наибольшего или наименьшего значения функции на отрезке:

  • Найти производную функции.
  • Выбрать из точек, подозрительных на экстремум, те, которые принадлежат данному отрезку и области определения функции.
  • Вычислить значения функции (не производной!) в этих точках.
  • Среди полученных значений выбрать наибольшее или наименьшее, оно и будет искомым.

Пример 1. Найдите наименьшее значение функции
y = x 3 – 18x 2 + 81x + 23 на отрезке .

Решение: действуем по алгоритму нахождения наименьшего значения функции на отрезке:

  • Область определения функции не ограничена: D(y) = R.
  • Производная функции равна: y’ = 3x 2 – 36x + 81. Область определения производной функции также не ограничена: D(y’) = R.
  • Нули производной: y’ = 3x 2 – 36x + 81 = 0, значит x 2 – 12x + 27 = 0, откуда x = 3 и x = 9, в наш промежуток входит только x = 9 (одна точка, подозрительная на экстремум).
  • Находим значение функции в точке, подозрительной на экстремум и на краях промежутка. Для удобства вычислений представим функцию в виде: y = x 3 – 18x 2 + 81x + 23 = x (x -9) 2 +23:
    • y (8) = 8 · (8-9) 2 +23 = 31;
    • y (9) = 9 · (9-9) 2 +23 = 23;
    • y (13) = 13 · (13-9) 2 +23 = 231.

Итак, из полученных значений наименьшим является 23. Ответ: 23.

II. Алгоритм нахождения наибольшего или наименьшего значения функции:

  • Найти область определения функции.
  • Найти производную функции.
  • Определить точки, подозрительные на экстремум (те точки, в которых производная функции обращается в ноль, и точки, в которых не существует двухсторонней конечной производной).
  • Отметить эти точки и область определения функции на числовой прямой и определить знаки производной (не функции!) на получившихся промежутках.
  • Определить значения функции (не производной!) в точках минимума (те точки, в которых знак производной меняется с минуса на плюс), наименьшее из этих значений будет наименьшим значением функции. Если точек минимума нет, то у функции нет наименьшего значения.
  • Определить значения функции (не производной!) в точках максимума (те точки, в которых знак производной меняется с плюса на минус), наибольшее из этих значений будет наибольшим значением функции. Если точек максимума нет, то у функции нет наибольшего значения.

Пример 2. Найдите наибольшее значение функции.